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ABSTRACT

There has been growing need to characterize the fluid flow through a simplified model such as random walk
dynamics. The research work covered three distinct regions of fluid fiow namely the laminar region the
transition region and the lurbulent reqion Appropriate flow charts and FORTRAN-90 source codss were
developed to solve relevant fluid flow governing equalions. Reynolds number was used as the conirol
parameler to tune frem laminar to turbufent fiow while relevant solution was graphed using Microsoft Exce!l.
The graph shows the distinct regions. The first region characterizes farninar region with three straight-line
segments. The second region is the transition region, which is in form of wavy line segments. The third region
is the turbulent region in which higher wavy line segments are shown. The degree of waviness and number o!
wavy line segments increases from transition region to turbulent region. The resulf shows that fluid flow can
be characterized through the use of randorn walk dynamics.
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INTRODUCTION

A random walk is formalization in
Mathematics, Computer Science and Physics of the
intuitive ideas of taking successive steps, each in a
random direction. The simplest random walk
considers a.walker that takes steps of length L 1o
the left or right along a line while more complex
random walks include fancies consideration such as
given each step velocity and allowing the random
walker to pause for random amount of tme In
between the steps

Ojoawo {20C7) mnvestigated random walker
in three dimensional Euclidean space. The random
method to model the diffusion of vorticity was first
proposed by Chorin(1978). In order to simulate the
diffusion of vorticity in vortex flow, the positions of
the vortices are given random displacements
{Chorin and Marsden, 1930). The basic idea of the
random walk method as applied to fluid flow is that
the random displacements spread out the vorticity.

Several studies investigated the theoretical and .

numerical aspect of the random walk method
Marchiora and Pulvienti (1982), Goodman (1987)
and Long (1988) have shown that for flow in free
space, the random walk solution converges to that
of the Navier-Stokes eguations as the number of
vortices is increased, Cheer (1989) has applied the

tatmdiunts yvalh rnetdoad Lo Moo vvor u’lh o L\itni\)
{1990) has used the random walk method for flow
over airflow cascade while Chui (1993) used the
random walk method to study thermal boundary
layers. The random walk method has several
advantages. It is simpie to use and it can easily
handle flows around complicated boundaries. The
method also conserves the total circulation. This is
in application to inviscid flows.

The soil erosion considered is  lhe
detachment of materials from the bed or sides of &
channel. The water flowing through stream performs
three types of geologic work. Moving water erodes
materials from the bed or side of the channel and
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transports the eroded material o 2 new location and
deposits it. After the material has been detached
from the channgi, it can be transporied. As the
particle size mcreases, the wvelucihy needed o
transport it alsoincreases
The Reynolds number governs laminar-
turbulent transition I also characterizes whether the
flow conditions lead to laminar or turbulent flow
Transition lo turbulent can occur over a range of
Reynolds numbers depending on many factors such
as surface roughness, heal transfer, vibration, nose
and gther disturbances
The objectives of this work are to-
1. Characterize parameters for fluid flow using
a set of random walkers

2. Develop a simplified model (G characterize
the fluid flow through the use of random
walk dynamics.

The study intends to explore the distinguishing
features of the distinct regions n fluid flow throug!
the use of random walk dynamics

The research project is significant to the
advancement of Science ano‘ Engineering It 15
justified for the following reasons

1. The randorn walk model car be used |L

analyze flows in fioods

2. The random wal

D e T DYt
erosion and. hence aid
production.

This paper reporis a "random walk model” fo
characterization of fluid flow through the use o
‘boundary layers by discrete vortex medeling’ The
research work is expected o cover the ihree distinct
regions namely laminar, transition and turbulent.

n

ralyuio

enhanced 100C

MODEL FORMULATION

The first practicai scheme for simulation of 2
boundary iayer by discrete vortices was proposec by
Chorin (1978) based on his earlier conception of the
random walk model for tigh Reynolds number biuf?
body wake flows. The boundary layer fiow can he
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approximated by placing at appropriate location
some vortices in a parallel flow. This forms the basis
of the vortex element method.

The motion of a diffusing vortex of mmal
vorticity strength (') entered on the origin of the
(r.8.d) plane is described by the diffusion equation
from which we may obtain the well known solution
for subsequent vorticity w(r,t) in space and time.

r o
afnl) = —e (1)

vt )
Vorticity strength is a function of radius r and time t.
For a vortex of unit strength split into N elements.
Let us assume that n vortex elements are scattered
into the smail area raBAdAr after time t, the total
amount of vaorticity P, in this element of area then
follows from :
P = 2 = l Al( hl ‘r ABAAr  (2)
N l dmvt |
Where T is the ratio of the circumference of a circle
to its diameter and u is the kinematic viscosity.
An appropriate strategy is to displace each element
in the in the radial and angular directions by
amounts r, 8, and &, over time interval 0 to t. Thus

we may define 6 and ¢ values independently of r,

values by the equation :

8, =270, )

¢ =al). (4)

Where Q, is a random number within the range 0 <
0,<10.

The probability P that an element will be within a
circle of radius r is given by the eguation

s

| sl

P=1l-¢ (8)
Thus for the n" vortex element equation (5)
becomes
| ™ At
=]~ e ‘ (6)
From which we obtain its radial random shift
. = & s
=| 4vtIn J) (7)
\ \1 | [)’ ‘7

Considering diffusion over a succession of
small time increments At, the displacements of

Gluier il duifigtivne ot will U Lo

AD, = 212Q, (8)

ag; = O (9)

\r—l4\/ln| — | (10)
\ \ B ). J J

[hus after the increment At, the new coordinate
location (X, vi', z) of the n" element will become

X' =X + Arsind,cosd; (11)
y' = y; + Arsing,cosg; (12)
= Z + Ar,Cosg; (13)

Where x, = oid x — coordinate of n" element
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¥, = old y — coordinale f n eIcmH it
z = old z — coordinate of n'" element

The displacement from the origin 1s given by the
equation:

e [ o . 2 o " 52
D, s ofl{x, =2, 5+ (3 =2, ) < {2,'=2

Where X yp and z; are the ornigin

\) (14)

Boundary layers by Discrete vortex modeiing
Convective motion weire completely ignored
for the diffusion point flow which have just been
considered, an assumption wnich is permissible in
view of symmetry in these special cases and
justified for very low Reynolds numbers
Boundary layer flows on the other hand are
more complex involving:
(1). Externally imposed convection due lo the
main stream U, the significance of which 1s
determined by ' .

)
(1]

the body scale Reynolds number L -
"

L is the characteristic length of the particular

flow. ,

(ir). Continuous creation of vorticity at the
contact surface between fluid and wall,
replacing the vorticity removed by diffusion
and convection

Random Number Generation

Algorithms were developed tc produce long
sequences of apparently random results, which are
in fact completely determined by a shorted nitial
value known as a seed.

Application of Random Walk Method

The application of the random walk will result in
the loss of half of the newly created vorticity due to
diffusion across the walls and therefore out of the
active flow domain if vorticity is not conserved duriny
the diffusion and convection processes for each
time step.

The single strength sheet s used through
bouncing back vortices which attempt to cross the
wall by assigning the value y; = abs (y))

Selection of Element Size and Time Step

A reasonable approach to the selection of an
appropriate time At’is to focus attention on the

average displacements of the discrete voriices due
to convection and diffusion. The average convective
displacement may be approximated hy:

. I ..
Op = - UAr {15]
The average diffusive displacement may be
approximated by:
J@varIn2) (16)
To maintain equal discretisation of the fluid motion

due to convection and diffusion we may equate A,
and &5 resulting in the expression

(5[.1 =
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16LIn2
Al = === 17
URe
v UL,
Where Re = —— isthe plate Reynolds number
‘.‘

It would also be reasonable to select surface
element size As at twice 5. leading to

As = UAt {18)
]()1 In2 (19)
Re (

The required number of surface elements for
satisfactory discretisation of the plate is then given
oY

M= L (20)
As
Re
M= (21)
16In2

It is clear from this study that enforcing equal
discrelisation scales &: and &y for convention and
diffusion wiil lead to computational difficulties at high
Reynolds numbers. For example, the boundary layer
considered for Re = 500, yields M = 45. On the
" other hano for a typical engineering system value of
Re = 10°, yields roughly M = 8017, thereby imposing
severe pressure upon computational requirements.
The related time increment At = 0.00011 would also
require 10" time steps to achieve one flow pass. It is
thus clear that practical computational limitations will
rule oul vortex modeling for typical engineering
svstem Reynolds numbers if we attempt to impose
the constraint 6 = &p to the foregoing calculation.

Some Considerations for high Reynolds Number
lows

One way to reduce these difficulties for high
Reynolds number would be to select different time
steps for diffusion (Alp) and convection (Atg). Since
convection now dominates the flow, it will be
preferable to select the scale of convection
displacements through:

o,

ko= 5 {22)
As
Where K can be set to be equal tc 0.5
The convective time step is:
2kA
Ar. NI (23)
S
JEL £
& ¥ — = | (24)
MA\U )

Although it would be perfe
beoth the convection and
over the same ume step At & saving in
computational  effori  couid he achieved by
undertaking only one random walk for every N.
convection step with

Aty =N AL (25)
The upper limit of N; obtained from equating the
scales 8¢ and SpN' is

1 walk Drocesses
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N.= _kRe
8Min2 (26)
SIMULATION

The governing equation is developed for the
fluid flow. The Reynoids number served as the
control parameter that governed the laminar-
turbulent transition. This is followed by ihe
formutation of algorithms for the model, which is
illustrated by the flow chart. The flow chart is used in
writing the FORTRAN-9C program. The program is
then run 1o generate desire outpul. The result
obtained were used to plot the graphs through
Microsoft Excel.

RESULTS AND DISCUSSION

Table 1 shows the resuli of Reynolds
number and time increment. It also shows the
number of time steps, number of elements and log
of average distance against log of time steps. The
index is the slope abtained from the graph of log ol
average distance against log of time steps. The time
increment decreases with increase in Reynolds
number. The Reynolds number increases with
increase in the number of time steps and number of
elements or trials. Initially, the Reynolds number
increases with the index, but from the Reynolds
number of 70,000 there is onset of fluctuation in
index.

The characterizing parameters are the index and
Reynolds number. The graph of Index and Reynoids
number displayed three distinct regions (fig.2) The
concept of critical Reynolds number proves quite
useful in demarcating the regimes of laminar and
turbulent flows. The lower limit of critical Reynolas
(Re). exists and its value is approximately 70,000,
The upper limit of critical value of (Re), which
characterizes full attainment of transition lie between
90,000 and 310,000. The lower critical Reynolds
number is of greater engineering importance as it
defines the limit below which ail turbulence, no
matter how severe, entering the flow from any
source will eventually be damped oul by viscous
action. .

The first region characterized Ilaminar
region with straight-line segment (fig.3) In this

region, the Reynolds number is less than
/U QU0 [ he second region Is the transition region

which is in form of way-line segments (fig.4; There
is onset of waviness (moving to and fro or up and
down of lines in series). This region is from
Reynolds number of 70,000 to 310,000 The third
region is the turbulent region in which higher wavy-
line segments are shown (fig.5) The region starts
from Reynolds number of 320,000. Hence i laminar
region, there is no waviness while the degree of
waviness and number of wavy line segments
increase from transition region to turbulent region.
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Fig.1. Random Walk Model Algorithms/Flowchart B
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k=1

4
Generation of Random Number RAN
Q(I) = RAN (I)

PSIK{I) = * Q(I)

THETA = 2.* *Q(I)

> P=Q0)
X (0, Ik) = Xo
Y (0, k) =
Z(0, 1K) =

= |k+1

Determination of Radial shift
Dr (1, Ik) = (4.*v*t*In(1/1-P))"

!

Change in the co-ordinate

X (I, Tk) = X(I-1, Ik) + Dr(I, Ik)*SIN(THETA(I)* COS(PSI(I))
Y (1, Ik) = ABS (Y(I-1, Ik) + Dr(I, Tk)* SIN(THETA(I)* SIN(PSI(I))
Z (1, Tk = Z(I-1, IK)) + Dr(LIk)* COS(THETA(T))

I=i+1 l

Determination of Distance from the origin

(Z(1, Tk) — Zo)**2

DOR(I, Ik) = SQRT((X(L, ) - Xo)**2 + (ABS(Y(L, k) ~ Y)**2 +

YES

[<N()

Xo = Xo+ (1/M(J)

x

YES Ik«N (7)
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Determination of sum of distance from the
Origin SDOR

4

Determination of Average distance from
the Origin AVDOR

4

Write All Value of Time Increment, Number of time steps,
Number of elements, Loge (time) and Log (AVDOR)

YES

NO

TABLE 1: CHARACTERIZATION OF FLUID FLOW

Reynolds Time Number  Number of Log of average Index (m)
number Increment of time elements distance against log of
{Re) {At) steps (N} or trials (M) time steps (y = mx +

c)
10,000 0.11090 9 2} y = 0.5865 x + 0.2821 0.5865
20,000 0.05545 18 18 y=07218 x + 0.2165 0.7218
30,000 0.03697 27 27 y = 08182 x + 0.1355 0.8182
40,000 0.02773 36 36 y =0.8243 x + 0.1274 08243
50,000 0.02218 45 45 y = 0.8266 x + 0.1647 0.8266
60,000 0.01848 54 54 y =0.8281 x + 0.1517 0.8281
70,000 0.01584 63 63 y =0.8558 x + 0.1131 0.8558
80,000 0.01386 72 72 y =0.8817 x + 0.9490 0.8817
90,000 0.01232 81 81 y =0.875x + 0.1003 0.875
100,000 0.01109 90 90 y = 0.8908 x + 0.0874 08908
110,000 0.01008 99 99 y = 0.8859 x + 0.0230 0.8859
120,000 0.00924 108 108 ¥ & UBoUD X T uuges U D000
130,000 0.00853 117 117 y =0 8906 x + 0.0863 0 8906
140,000 0.00792 126 126 y =0.8953 x + 0.0713 0.8953
150,000 0.00739 135 135 y =0.8948 x + 0.0780 08948
160,000 0.00693 144 144 y = 0.0918 x + 0.0722 0.0919
170,000 0.00652 153 153 y=0.9125x + 0.052 0.9125
180,000 0.00616 162 162 y = 0.8087 x + 0.0561 0.9087
130,000 0.00584 171 171 y=0.821 x + 0.0361 0921
200,000 0.00555 180 180 y = 0.9232 x + 0.0317 0.6232
210,000 0.00528 189 189 v = 08170 x + 0.0456 0.6170
220,000 ¢ 00504 198 198 & x +(0.0346
230,000 0.00482 207 207 0 x +0.0311
240,000 0.00462 216 216 y : 93 x + 5.0450
250,000 0.00444 225 225 y = 0.9220 x + 0.0468
260,000 0.00427 234 234 y = 09268 x + 0.0361
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Table 1; Cont'd

Reynolds Time Number of Number of Log of average distance Index (m)
number Increment time st2ps elements aganst log of time steps
(Re) (at) (N) or trials (M) (y = mx-+ c)
270,000 0.00411 243 243 y =0.9293 x + 0.0295 0.9293
280,000 0.00396 252 252 y =0.9367 x + 0.0118 0.9367
290,000 0.00382 261 261 y =0.933 x + 0.0238 0933
300,000 0.00370 271 271 y =0.9338 x + 0.0208 0.9338
310,000 0.00358 280 280 y =0.9295 x + 0.0353 0.9295
320,000 0.00347 289 289 y =0.9375x + 0.0158 09375
330,000 0.00336 298 298 y =0.9329 x + 0.0264 09329
340,000 0.00328 307 307 y =0.9357 x + 0.0217 0.9357
350,000 0.00317 316 316 y =0.9373 x + 0.0172 0.9373
360,000 0.00308 325 325 y =0.9368x + 0.0192 0.9368
370,000 0.00300 334 334 y =0.9413 x + 0.0107 09413
380,000 0.00292 343 343 y = 0.9454 x + 0.0035 0.9454
390,000 0.00284 352 352 y =0.9406 x + 0.0136 0.9406
400,000 0.00277 361 361 y =0.9445 x + 0.005 0.9445
410,000 0.00270 370 370 y =0 9450 x + 0.002 09450
420.000 0.00264 379 378 y = (0.9450 x + 0.0032 09470
430,000 0.00258 388 388 y =0.9470 x - 0.0003 08470
440,000 0.00252 397 387 y =0.9457 x.+ 0.0038 0.5457
450,000 0.00246 406 406 y =0.9548 x—0.0173 0 9548
460,000 0.00241 415 415 y =0.9479 x - 0.0008 0.9475
470,000 0.00236 424 424 y =0.9470 x + §.0001 0.9470
480,000 0.00231 433 433 y = 0.9539 x - 0.0128% 0.9539
490,000 0.002286 441 441 y = 0.9495 x — 0.0028 0.9495
500,000 0.00222 451 451 y = 0.9525 x — 0.0095 0.9525
510,000 0.00217 460 460 y=0.954 x-0.0134 0.954
520,000 0.00213 469 469 y =0.9531 x—-0.0109 09531
Table 1: Cont'd e
Reynolds Time Number of Number of Log of average distance Index (m)
number increment time steps elements against log of time steps
(Re) (At) (N) or trials (M) (y=mx+c} -
530,000 0.00209 478 478 y =0.9534 x-0.0110 0.9534
540,000 0.00205 487 487 y =0.9551 x - 0.0G30 0.9551
550,000 0.00202 496 496 y =0.9524 x - 0.0070 0.9524
560,000 0.00188 505 505 y=0.9570 x - 0.0179 0.9570
570,000 0.00195 514 514 y =0.9541 x - 0.0117 0.9541
580,000 0.00191 878 523 y =0.9638 x - 0.0095 0.9538
590,000 0.00188 832 532 y =0.9574 x - 0.0199 0 9574
600000 0.00188 541 541 y = 0.9569 x - 0.0168 0.9569
610,000 0.00182 550 550 y =0.9578 x - 0.0194 09578
620,000 0.00179 559 559 y =0.9587 x - 0.0212 0.9587
630,000 0.00176 568 568 y =0.9593 x - 0.0230 0.9593
640,000 0.00173 577 577 y =0.9620 x — 0.0029 0.9620
650.000 0.00171 586 586 y =0.9582 x - 00180 0.9582
660,000 0.00168 - 595 595 y =0.9572 x - 0.0161 0.9572
670,000 0.00166 604 604 y = 0.9595 x - 0.0235 0.9595
680,000 0.00183 613 613 y = 0.9589 x — 0.0203 0.9589
690,000 0.00161 622 622 y=0.9618 x - 0.0277 0.9618
700,000 0.00158 631 631 y =0.9599 x - 0.0242 0.9599
710,000 0.00156 640 640 y =0.9586 x-0.0194 0.9586
720.000 0.00154 649 649 y =0.9628 x-0.03 0.9628
730,000 0.00152 658 658 y = 0.9604 x -- 0.0224 0.9604
740.000 0.00150 667 667 y =09600 x -00212 0 9600
750,000 0.00148 676 676 y = 09625 x —0.0273 09625
760.000 0.00146 685 685 y =0.9612 x — 0.0235 0.9612
770,000 0.00144 614 614 y = 0.9652 x - 0.0357 0.9652
780,000 0.00142 703 703 y = 0.9624 x - 0.0268 0.9624

Journal of Applied Science, Engineering and Technology 24 Volume 11, 18 -27




Adegbola and Salau

SRR 1)

Table 1: Cont’d o
Reynalds Time Number of Number of Log of average distance Index (m)
number Increment time steps  elements  or against log of time steps
(Re) (at) Ny  tmals(M) - (y=mx+c)
790,000 0.00140 712 712 y=0.9627 x - (1 G274 05627
800,000 0.00139 721 721 y = 0.8625 x - (1 0275 09625
810,000 0.00137 730 730 y =0.9630 x - 0.028 0.9630
820,000 0.00135 739 739 y =0.9650 x -~ 0.0233 0 9650
830,000 0.00134 748 748 . y=0.8611x-0.0726 09611
840,000 0.00132 T57 757 y = 0.9625 x - §.U251 0.9625
850,000 0.00130 766 766 y = 0.8637 x — 0.0298 0.9637
860,000 0.00129 75 775 y =0.9649 x - 0.0321 0 9649
870,000 0.00127 784 784 y =0.9634 x - 0.0274 09634
880,000 0.00126 793 793 y = 0.9658 x - 00 0348 0.9658
890,000 0.00125 802 802 y =0.9642 x - 0.0302 09642
900,000 0.00123 812 812 y = 0.8653 x ~ 010323 0.9653
910,000 0.00122 821 821 y=0.9644 x - O3 - 0 9642
920,000 0.00121 830 830 y = 0.9042 x - 102686 U 9632
930.000 0.00119 839 - 839 y = 0.955T% -\0.0402 0 5681
940.000 0.00118 848 848 y = .8084 105938 ) LRRa
950,000 0.00117 857 857 y=0.8672 x - 0.0371 Uo7z
960.000 0.00116 866 866 : y =0.9688 x -~ 0.0415 0.9688
§70,000 0.00114 875 875 y = 0.9666 x - 0.035 0 9666
980,000 0.00113 884 884 y =0.9694 x —0.0417 0.9694
990,000 000112 883 893 y = 098637 x - 0.0432 0 Q897
1000000 0.00111 302 902 y = 0.9696 x -~ 0.0428 0.9696

et |
|
0.9 |
0.85 - g Z !
(@ i
Z e - )
> 9.8 () &) & ‘
<& ot C‘] = :
D5Q o &
_— = 7, e
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e = =
0.65 | /< e =
I'NZ N -
08 i = Z a
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0.55 = e = T .
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Re .

" Fig 2: Laminar, transition and turbulent region
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CONCLUSION ) '

The study has explored the uss of random
walk model to characterize the fluid flow {soil
erasion}. The index number increases with increase
in Reynolds number Rale of increase of index
numper s highest n the laminar region and
smallest in turbulent region.
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