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Abstract

American Power Put Option (APPO) is a financial contract with a non-

linear payoff that can be applied at any time on or before its expiration date

and offers flexibility to investors. Analytical approximations and numeri-

cal techniques have been proposed for the valuation of Plain American Put

Option (PAPO) but there is no known closed-form solution for the price of

APPO. Mellin transform is a useful method for dealing with unstable math-

ematical systems. This study was designed to derive a closed-form solution

for APPO by means of the Mellin transform method that enables option

equations to be solved directly in terms of market prices and to investigate

the efficiency and robustness of the method.

The Ito’s lemma under the geometric Brownian motion was used to de-

rive a non-homogeneous Partial Differential Equation (PDE) for the price

of APPO. The Mellin transform with its shifting and derivative properties

were used to solve the non-homogeneous PDE. The Mellin inversion formula

and the value-matching condition were used to recover the integral repre-

sentations for the price and the free boundary of APPO, respectively. The

convolution theorem for the Mellin transform was used to prove the equiv-

alence of the integral representation for the price of APPO, for n = 1. The

integral representation was transformed into a form that permits the use of

the Gauss-Laguerre quadrature method to obtain the closed-form solution

for the price of APPO. By varying the volatility (σ), strike price (K) and

time to expiry (T ), numerical experiments were performed to compare the

results of the Mellin transform method for the price of APPO for n = 1 with

accelerated binomial model, binomial model, finite difference and recursive

methods.

A non-homogeneous Black-Scholes-Merton-like PDE for the price of APPO

was obtained. The integral representations for the price and the free bound-
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ary of APPO were obtained respectively as:
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, α2 = 2r

n2σ2 , where c, C, Anp (Snt , t), n, S̄nt , Snt , t, <(ω),

q, r and ω are the constant, set of complex numbers, price of the option, power

of the option, free boundary, underlying asset price, current time, real part,

dividend yield, risk-free interest rate and complex number, respectively. The

integral representation for the price of APPO, for n = 1 was proved to be

equivalent to the Kim integral equation for PAPO. With the Gauss-Laguerre

quadrature method, the closed-form solution of the price of APPO was also

obtained. The numerical results showed that the Mellin transform method

was efficient and more accurate for higher values of volatility and time to

expiry when compared with the other methods.

Mellin transform method has been used to derive a closed-form solution

for the price of American power put option which was computationally effi-

cient and robust at n = 1.
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Ŝnt Free boundary of American power put option with non-
dividend yield

S̄n∞ Free boundary of perpetual American power put option
with dividend yield
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Chapter 1

Introduction

1.1 Background of the Study

The derivative market have become extremely popular, this popularity

exceeds that of the stock exchange. Many problems in mathematical finance

entail the computation of a particular integral. In many cases these inte-

grals can be solved analytically and in some cases they can be solved using

numerical integration.

The history of options extends back to several centuries, it was not clear

until 1973 that the trading of options was formalized by the establishment of

the Chicago Board of Options Exchange (CBOE) with more than one million

contracts per day. This same year was also a turning point for research in

option valuation. Black and Scholes (1973) published their work on option

pricing in which they described a mathematical frame work for finding the

fair price of a European call option. In the recent years, the complexity of

numerical computation in financial theory and practice has increased greatly,
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putting more demands on computation speed and efficiency.

Securities are paper assets which are issued by a government or com-

pany in order to acquire capital financing; examples of securities include

bonds, bills of exchange, promissory notes, shares and financial derivatives.

An option is defined as a contract that grants its holder the right, without

obligation to buy or sell a specific underlying asset St on or before a given

date in the future (expiry date, T ) for an agreed price K, called the strike

price. The underlying assets include stocks, foreign currencies, interest rates,

stock indices and commodities. A call option gives the holder the right to

buy the underlying asset, whereas a put option gives the right to sell (Hull

(2002)). Power option is a financial contract in which the payoff at expiry

date is related to the nth power of the underlying asset price; thus the payoff

is a nonlinear function of the underlying. Power option is appropriate for

hedging non-linear price risks. The difference between the American and

the European power options is that the European power option can only be

exercised at the maturity or expiry date while the American power option

can be exercised by its holder at any time on or before the expiry date. Most

of the Over-The-Counter (OTC) traded options are of the American power

type. The early exercise feature makes the valuation of the American power

option mathematically challenging. Analytical approximations and numeri-

cal techniques have been proposed for the valuation of plain American option

but no known closed-form solution for the price of American power option

has been derived.
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Nowadays, investment companies use options for their risk management

through hedging against possible fluctuations of the underlying asset price.

Hence the valuation of options is an important field in financial research

(Zhang (2007)).

The subject of numerical methods in the area of options valuation and

hedging is very broad. A wide range of different types of contracts are avail-

able and in many cases there are several candidate models for the stochastic

evolution of the underlying state variables.

1.2 Aim and Objectives of the Study

This work is concerned with financial mathematics in continuous time.

The aim of this work is the study of the applicability of the Mellin transform

method in the field of American power put option valuation.

The objectives of the study are as follows:

(i) To use the Mellin transform method to solve the partial differential

equations for the price of power put options namely European and

American power put options with non-dividend and dividend yields,

respectively.

(ii) To obtain the integral representations for the price of the European

power put option which pays both non-dividend and dividend yields,

respectively.

(iii) To use the convolution property of the Mellin transform method to ob-
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tain the fundamental option valuation formulae known as “The Black-

Scholes-like model” and “The Black-Scholes-Merton-like model” for the

cases of non-dividend and dividend yields, respectively.

(iv) To obtain the integral representations for the price and the optimal

exercise boundary (called the free boundary) of the American power

put options with non-dividend and dividend yields, respectively.

(v) To extend the integral representations for the price of the American

power put option for the cases of non-dividend and dividend yields,

respectively to obtain the optimal exercise boundary and the analytic

valuation formula for perpetual American power put option.

(vi) To obtain a closed-form solution for the price of American power put

option with dividend yield.

(vii) To extend the Mellin transform method in higher dimensions for the

valuation of put options on a basket of multi-dividend paying stocks.

1.3 Motivation

Methods for the valuation of vanilla and path dependent options analyt-

ically are often derived by solving partial differential equations. Since these

backward-in-time equations are parabolic in nature, they must be solved with

payoff-specific boundary conditions. Although a solution can be derived di-

rectly in some cases, many contracts have corresponding partial differential
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equations that are too complex to allow for a standard solution. Examples

are the European and the American options in stochastic rate models and

stochastic volatility. For the European options, the resulting equations be-

come two or higher dimensional depending on the number of state variables.

The American options have partial differential equations of free boundary

type. The main difficulty in valuing American style options analytically is

the presence of the early exercise optimally prior to expiry. The optimal ex-

ercise boundary is not known and must be determined simultaneously as part

of the underlying valuation problem. This feature makes the valuation and

hedging of American options mathematically challenging and created great

field of research throughout the last three decades. In both cases of the op-

tions, advanced method based on the integral transforms used in theoretical

and applied mathematics are needed to provide an accurate approximation

of solution and to tackle the complexity of the options by reducing the di-

mensionality existing in the valuation problem.

The history of integral transforms began with D’Alembert in 1747.

D’Alembert proposed using a superposition of sine functions to describe the

oscillations of a violin string (D’Alembert (1747a)). Examples of integral

transforms are; the Mellin transforms, the Laplace transforms, the Fourier

transforms and the Hilbert transforms. These integral transforms are used

to solve differential and integral equations arising in engineering and ap-

plied mathematics. Among the integral transforms, the Mellin transform

has gained great popularity in complex analysis and analytic number theory
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for its applications to problems related to the Gamma function, summation

of infinite series and other Dirichlet series. The main difference between the

Mellin transform and the Fourier transform is that the Mellin transform ex-

ists in vertical strips of the complex plane whereas the Fourier transform is

defined in horizontal strips.

In mathematical finance, the Mellin transform enables option equations to

be solved directly in terms of market prices rather than log-prices, providing

a more natural setting to the valuation problem. Despite this, the Mellin

transform’s ascension into the realm of mathematical finance is only about

one decade old.

In this thesis, the Mellin transform method was used for the valuation of

American power put option with non-dividend and dividend yields, respec-

tively under the geometric Brownian motion.

1.4 Structure of the Study

The structure of the thesis is organized as follows. Chapter One consists

of introduction. Chapter Two presents the literature review. Chapter Three

presents the concept of the Mellin transforms, some of its basic operational

properties and its extension to the multidimensional case. The Laplace and

Fourier transforms and their properties were presented. Stochastic calculus

and basic principles of option valuation were discussed. In Chapter Four, it

was shown that the stock dynamics of power options followed a lognormal

distribution. The generalized fundamental valuation equation for the price
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of power options with non-dividend and dividend yields, respectively was

derived. The valuation formula for power call option in the Black-Scholes

model framework was obtained by means of risk-free probability measure.

The Mellin transform method was applied to obtain the integral representa-

tions for the price (and the free boundary) of power put options on a single

underlying stock with non-dividend and dividend yields, respectively. The

integral representations for the price of the American power put option with

non-dividend and dividend yields, respectively was used to obtain the opti-

mal exercise boundary and the analytical valuation formula for the perpet-

ual American power put option. A closed-form solution for the price of the

American power put option with dividend yield was obtained. Basket option

was described. The integral representations for put options on a basket of

multi-dividend yields using the multidimensional Mellin transform method

was obtained. Other related methods for options valuation were considered.

Some numerical experiments and discussion of results were also presented.

Chapter Five presents conclusions and recommendations.
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Chapter 2

Literature Review

The revolution on derivative securities, both in exchange markets and in

academic communities began in the early 1970’s (Weber (2008)). In 1973,

Black and Scholes published their paper on option valuation, in which a

closed-form expression for the price of the European call option was derived.

They used a no-arbitrage argument to describe a partial differential equation

which governs the evolution of the option price with respect to the maturity

time and the underlying asset price.

Moreover, in the same year, Merton (1973) extended the Black-Scholes

model in several important ways. Since its invention, the Black-Scholes for-

mula has been widely used by traders to determine the price of an option.

However this famous formula has been questioned after the crash of the

stock market in 1987 (Carlson (2006)). Following the Black and Scholes

option pricing model in 1973, a number of other popular approaches were

developed, such as Merton (1976), Brennan and Schwartz (1978), Cox et al.

(1979) and Boyle et al. (1997) to price the derivative governed by solving
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the underlying partial differential equation.

In 2002, Cruz-Baéz and González-Rodŕiguez pioneered the method of

using the Mellin transform to solve the associated Black-Scholes partial dif-

ferential equation for a European call option. Esser (2003) investigated the

valuation of power and powered options in the Black-Scholes model and used

the technique of change of numéraire. The valuation of power options in the

Black-Scholes model was investigated by Esser (2004), following similar ar-

guments used in deriving the Black-Scholes formula of the valuation of plain

vanilla European options.

Mellin transforms in option theory were also introduced by Panini and

Srivastav (2004). They derived integral equations for the price of European

and American basket put options using Mellin transform techniques. Panini

and Srivastav (2005) derived the expression for the free boundary and price

of an American perpetual put as the limit of a finite-lived option. Company

et al. (2006) constructed an explicit solution of the Black-Scholes equation

with a weak payoff function. By means of the Mellin transform of a class of

weak functions, they obtained a candidate integral formula for the solution.

Rodrigo and Mamon (2007) used the Mellin transform approach to prove

the existence and uniqueness of the price of a European option under the

framework of a Black-Scholes model with time-dependent coefficients. They

also derived a maximum principle and used it to prove uniqueness of the

option price.

Frontczak and Schöbel (2008) extended the results obtained in Panini

9



UNIV
ERSIT

Y O
F 

IB
ADAN LI

BRARY

and Srivastav (2005) and showed how the Mellin transform approach can

be used to derive the valuation formula for perpetual American put options

on dividend-paying stocks. Frontczak and Schöbel (2009) used a framework

based on the Mellin transforms and showed how to modify the approach to

value American call options on dividend paying stocks. Zieneb and Rokiah

(2011) derived a closed form solution for a continuous arithmetic Asian option

by means of partial differential equation. They also provided a new method

for solving arithmetic Asian options using Mellin transforms in a stock price.

The pricing of power options under generalized Black-Scholes model was

considered by Wu and Xu (2011). Under the Heston model, pricing formulas

for power options were derived analytically in Kim et al. (2012b). Kim

(2014) considered the pricing of power options under the regime-switching

model by means of the Laplace transforms.

Manuge and Kim (2015) derived the analytical pricing formulas and

Greeks for European and American basket put options using the Mellin trans-

form. They assumed that assets are driven by geometric Brownian motion

which exhibit correlation and pay a continuous dividend rate. Xu (2015) de-

rived a closed-form solution formulae for the pricing of powered options and

capped powered options in the Black-Scholes-Merton environment. Closed-

form pricing formula for exchange option with credit risk by means of the

Mellin transform was derived by Kim and Koo (2016). Zhang et al. (2016)

investigated the valuation of power option under the assumption that the un-

derlying stock price is assumed to follow an uncertain differential equation.

10
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Several approximations and numerical techniques that have been pro-

posed for the valuation of plain American options can be found in Mc Kean

(1965), Samuelson (1965), Merton (1973), Johnson (1983), Geske and John-

son (1984), Mc Millian (1986), Baron-Adesi and Whaley (1987), Breen (1989),

Kim (1990), Jacka (1991), Carr et al. (1992), Carr and Faguet (1994),

Wilmott et al. (1995), Balakarishna (1996), Broadie and Detemple (1996),

Huang et al. (1996), Carr (1998), Ju (1998), Kuske and Keller (1998), Kwok

(1998), Chiarella et al. (1999), Sullivan (2000), Ekström (2004), Panini

(2004), Peskir (2005), Belomestny and Milstein (2006), Heider (2007), Chen

et al. (2008), Li (2010b) and Kim et al. (2012a).

For mathematical backgrounds, other sporadic applications of transform

methods in financial contexts (see Widder (1941), Spiegel (1965), Buser

(1986), Beaglehoe (1992), Rogers and Shi (1992), Shimko (1992), Poularikas

(1999), Geman and Yor (1993), Jodar et al (2002), Petrella and Kuo (2004),

Cruz-Báez and González-Rodriguez (2005), Szymon et al. (2005), Company

et al. (2007), Frontczak (2013), Zieneb and Rokiah (2013), AlAzemi et al.

(2014), Manuge and Kim (2014) and Lee and Shin (2015)), just to mention

a few.
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Chapter 3

The Mellin Transforms and
Foundations

In this chapter, the concept of the Mellin transforms, some of its oper-

ational properties and its extension to the multidimensional case were pre-

sented. Fundamental concepts of stochastic calculus used in continuous-time

mathematical finance are also dealt with. Some terminologies and basic prin-

ciples of option valuation were also presented.

3.1 The Mellin Transforms

The first occurrence of the Mellin transform was found in a memoir by

Riemann in which he used it to study the famous Zeta function (Titch-

marsh (1986)). However, Mellin (1854-1933) was the first to give a system-

atic formulation of the Mellin transformation and its inverse (Lindelöf and

Mellin (1934)).1 Working in the theory of special functions, he developed

1Robert Hjalmar Mellin (1854-1933) was a Finnish function-theorist who studied under
Gösta Mittag-Leffler, Karl Weierstrass and Leopold Kronecker.
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applications to the solution of hypergeometric differential equations and to

the derivation of asymptotic expansions. The Mellin contribution gives a

prominent place to the theory of analytic functions and relies essentially on

Cauchy’s theorem and the method of residues (Bertrand et al (2000)). The

Laplace transform has been widely used in many engineering applications.

It provides a useful method for solving some types of differential equations

when certain initial conditions are given. A detailed presentation of the

topic including proofs and examples can be found in Widder (1941), Reed

(1944), Sneddon (1972), Titchmarsh (1986), Brychkov et al. (1992), Hai and

Yakubovich (1992), Flajolet et al. (1995), Debnath and Bhatta (2007).

Definition 3.1.1

The Mellin transform is a complex valued function defined on a vertical strip

in the ω-plane whose boundaries are determined by the asymptotic behaviour

of f(x) as x → 0+ and x → ∞. The Mellin transform of the function f(x)

is denoted by M(f(x), ω) and defined as

M(f(x), ω) := f̃(ω) =

∫ ∞
0

f(x)xω−1dx (3.1)

where f(x) is a locally Lebesgue integrable function. The Mellin transform

variable ω is a complex number, ω = <(ω) + i=(ω), where i is the imaginary

unit, and <(.) and =(.) are real and imaginary parts, respectively. However,

the Mellin transform of a function does not always exist. The following re-

sult summarizes the conditions that ensure the existence of (3.1). The largest

strip (a1, a2) in which the integral converges is called the fundamental strip.
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Lemma 3.1.1 (Existence Theorem for Mellin Transform) (Flajolet

et al. (1995))

Let f(x) be a continuous function such that

f(x) =

{
O(xa), x→ 0+

O(xb), x→∞.
(3.2)

Then the Mellin transform f̃(ω) exists for any ω ∈ C on −a < <(ω) < −b.

Remark 3.1.1

(i) This interval, known as the strip of definition of the Mellin transform

and often denoted by (−a,−b) is the domain of analyticity of f̃(ω). To

show this, consider the absolute bound of f(x),∣∣∣∣∫ ∞
0

f(x)xω−1dx

∣∣∣∣ ≤ ∫ 1

0

|f(x)|x<(ω)−1dx+

∫ ∞
1

|f(x)|x<(ω)−1dx (3.3)

≤ ĉ1

∫ 1

0

x<(ω)+a−1dx+ ĉ2

∫ ∞
1

x<(ω)+b−1dx (3.4)

where ĉ1, ĉ2 ∈ R+ ∪ {0}. Since the first integral in (3.4) converges for

<(ω) > −a and the second integral converges for <(ω) < −b, it follows

that f̃(ω) exists on (−a,−b). Thus the existence is granted for locally

integrable functions, whose exponent in the order at 0 is strictly greater

than the exponent of the order at ∞.

(ii) Consider instead the scenario, the Mellin transform of a function is

known and one wishes to recover the original function. For a function

f̃ : C → C, it can be shown under general conditions that an inverse

14
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f(x) ∈ IR+ only exists, but is also unique (for a given fundamental

strip) (Manuge (2013)).

Definition 3.1.2

If f(x) is an integrable function with fundamental strip (a1, a2), then if c is

such that a1 < c < a2 and {f̃(ω) : ω = c + it, c ∈ <(ω)} is integrable, the

equality

M−1(f̃(ω)) = f(x) =
1

2πi

∫ c+i∞

c−i∞
f̃(ω)x−ωdω (3.5)

holds almost everywhere. Moreover, if f(x) is continuous, then the equality

holds everywhere on (0,∞). Obviously, M and M−1 are linear integral

operators. Equation (3.5) justifies the formal statement, which goes under

the name of the Mellin inversion formula.

Three important examples of the Mellin transform were presented as follows:

(i) The function f(x) = e−x satisfies e−x = O(x0) as x → 0+ and e−x =

O(x−b) as x → ∞ for any b > 0 so that its transform (the Gamma

function)

M(e−x, ω) = f̃(ω) =

∫ ∞
0

e−xxω−1dx = Γ(ω),<(ω) > 0 (3.6)

is defined and analytic on (0,∞).

(ii) The function f(x) = (ex − 1)−1 satisfies f(x) = O(x0) as x → 0+ and

f(x) = O(x−b) for all b > 0 as x → ∞. Hence f(x) is analytic and

defined on (1,∞). We find

M((ex − 1)−1, ω) = f̃(ω) =

∫ ∞
0

(ex − 1)−1xω−1dx (3.7)
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But
∞∑
m=1

e−mx =
1

(ex − 1)
=

e−x

(1− e−x)
(3.8)

and hence

M((ex − 1)−1, ω) =
∞∑
m=1

∫ ∞
0

e−mxxω−1dx

=
∞∑
m=1

Γ(ω)

mω

= Γ(ω)ζ(ω)

(3.9)

M((ex − 1)−1, ω) = Γ(ω)ζ(ω), <(ω) > 1 (3.10)

The function

ζ(ω) =
∞∑
m=1

1

mω
, <(ω) > 1

is the famous Riemann Zeta function. It is required that <(ω) > 1 for

convergence of the Riemann Zeta function and it is clearly seen that

this validates the strip (1,∞) on which f̃(ω) is defined and analytic.

(iii) The function f(x) = (1 + x)−1 is O(x0) as x → 0+ and O(x−1) as

x → ∞. Hence a guaranteed strip of existence for f̃(ω) is (0, 1). Set

x = w
1−w . Then

f̃(ω) =

∫ 1

0

(
w

1− w

)ω−1
1

1 + w
1−w

(1− w)−2dw

=

∫ 1

0

(
w

1− w

)ω−1

(1− w)−1dw

=

∫ 1

0

wω−1(1− w)−ωdw

= Γ(ω)Γ(1− ω)
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3.1.1 Relation to Laplace and Fourier Transforms

Mellin transform is closely related to an extended form of other popular

transforms, particularly Laplace and Fourier. Both can be obtained through

a change of variables. By setting

x = e−t, dx = −e−tdt (3.11)

The Mellin transform (3.1) yields2

M(f(x), ω) = (f(e−t), ω) =

∫ ∞
−∞

f(e−t)e−ωtdt = L(f(e−t), ω) (3.12)

After the change of function

g(t) ≡ f(e−t) (3.13)

The two sided Laplace transform of (3.13) is defined by

L(g(t), ω) =

∫ ∞
−∞

g(t)e−ωt = f̃(ω) (3.14)

This can be written symbolically as;

M(f(x), ω) = L(f(e−t), ω) ≡ L(g(t), ω) (3.15)

The Laplace inversion formula is given by

L−1(f̃(ω)) = f(e−t) ≡ g(t) =
1

2πi

∫ c+i∞

c−i∞
f̃(ω)eωtdω (3.16)

2The occurrence of a strip of holomorphy for Mellin transform can be deduced directly
from (3.12). The usual right-sided Laplace transform is analytic in a half-plane <(ω) > a1.
In the same way, one can define a left-sided Laplace transform analytic in the region
<(ω) > a2. If the two half-planes overlap, the region of holomorphy of the two sided
transform is thus the strip a1 < <(ω) < a2 obtained as their intersection.
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To obtain Fourier’s transform, let α, β ∈ IR and set ω = α + 2πiβ in (3.12).

Then

M(f(x), ω) = f̃(β) =

∫ ∞
−∞

f(e−t)e−(α+2πiβ)tdt =

∫ ∞
−∞

h(t)e−2πiβtdt (3.17)

The result becomes

M(f(x), ω) =M(f(x), α + 2πiβ) = f̃(α + 2πiβ) = F(h(t), β) (3.18)

Equation (3.17) is called the Fourier transform of h(t) = f(e−t)e−αt. The

Fourier inversion formula is obtained as

F−1(f̃(β)) =
1

2π

∫ ∞
−∞

f̃(β)e2πβitdβ ≡ h(t) (3.19)

Remark 3.1.2

(i) A famous example of (3.5) follows from considering Γ(ω) with real

c > 0. By means of Stirling’s formula3

e−x =
1

2πi

∫ c+i∞

c−i∞
Γ(ω)x−ωdω

Practical inversion can sometimes pose a challenge due to the complex

nature of the integral. When possible, this is often achieved by di-

rect contour integration, conversion to polar coordinates, recasting the

problem as a product of gamma functions, exploiting properties of the

transform in conjunction with the inversion theorem, or by means of

previously solved tables of transforms (Oberhettinger (1974)).

3|Γ(a+ ib)| ∼
√
π|b|a−0.5e−0.5|b|π when |b| → ∞. See Poularikas (1999).
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(ii) For a given value of <(ω) = α belonging to the definition strip, the

Mellin transform of a function can be expressed as a Fourier transform.

(iii) By means of a change of variables x = e−t, dx = −e−tdt, it is observed

that the Mellin transform bears a striking resemblance to the Laplace

and the Fourier transforms. In particular, if L(.) and F(.) denote the

two-sided Laplace and Fourier transforms, respectively, then

M(f(x), ω) = L(f(e−t), ω) = F(f(e−t)e−ct, β) (3.20)

(iv) There are numerous applications where it has been established that it

is more convenient to operate directly with the Mellin transform rather

than the Laplace-Fourier version such as theory of analytic functions.

3.1.2 Operational Properties of the Mellin Transforms

The Mellin transform has the ability to reduce complicated functions by

realization of its many properties. This section describes the effect of the

Mellin transform M(f(x), ω) of some special operations performed on f(x).

The resulting formulas are very useful for deducing new correspondences from

a given one.

Let f̃(ω) =M(f(x), ω) be the Mellin transform of a distribution and denote

Uf = ω : a1 < <(ω) < a2, then the following properties of the Mellin

transform hold.

Scaling Property

M(f(ax), ω) =

∫ ∞
0

f(ax)xω−1dx = a−ωf̃(ω), a > 0 (3.21)
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Shifting Property

M(xaf(x), ω) =

∫ ∞
0

xaf(x)xω−1dx = f̃(a+ ω), a > 0 (3.22)

Mellin Transform of Derivatives

M
(
dk

dxk
f(x), ω

)
=

∫ ∞
0

dk

dxk
f(x)xω−1dx = (−1)k(ω − 1)kf̃(ω − k) (3.23)

where

(ω − k)k = (ω − k)(ω − k + 1)...(ω − 1) =
(ω − 1)!

(ω − k − 1)!
=

Γ(ω)

Γ(ω − k)
(3.24)

for a positive integer k, provided that for r = 0, 1, 2, ..., k − 1

lim
x→0+

xω−r−1f (k−r−1)(x) = lim
x→∞

xω−r−1f (k−r−1)(x) = 0

For k = 1, (3.23) becomes

M
(
d

dx
f(x), ω

)
=

∫ ∞
0

d

dx
f(x)xω−1dx = −(ω − 1)f̃(ω − 1)

provided

lim
x→0+

xω−1f(x) = lim
x→∞

xω−1f(x) = 0

The statement is proved straightforwardly using integration by parts.

Derivative Multiplied by Independent Variable

M
(
xk

dk

dxk
f(x), ω

)
=

∫ ∞
0

xk
dk

dxk
f(x)xω−1dx = (−1)kωkf̃(ω)

= (−1)k
Γ(ω + k)

Γ(ω)
f̃(ω)k (3.25)
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For example, if k = 2, using (3.25) yields

M
(
x2 d

2

dx2
f(x), ω

)
=

∫ ∞
0

x2 d
2

dx2
f(x)xω−1dx = (ω2 + ω)f̃(ω)

Mellin Transform of Integrals

M
((∫ x

0

f(x)dx

)
, ω

)
=

∫ ∞
0

(∫ x

0

f(x)dx

)
xω−1dx =

−f̃(ω + 1)

ω
(3.26)

Raising the Independent Variable to a Real Power

M(f(xa), ω) =

∫ ∞
0

f(xa)xω−1dx

Let x = t
1
a , this implies that dx = 1

a
t(

1−a
a )dt. Therefore

M(f(xa), ω) = a−1

∫ ∞
0

f(t)t(
1−a
a )t(

ω−1
a )dt

= a−1

∫ ∞
0

f(t)t(
ω
a
−1)dt

= a−1f̃
(ω
a

) (3.27)

where a ≥ 0 is required for f̃
(
ω
a

)
to be analytic. By a similar method to

(3.22) and (3.27) leads to a relation

M(x−1f(x−1), ω) = f̃(1− ω) (3.28)

Equation (3.28) is the property of the Mellin transform for inverse of inde-

pendent variable.

Multiplication of the Original Function by lnx

M((lnx)f(x), ω) =
d

dω
f̃(ω) (3.29)
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In general,

M((lnx)kf(x), ω) =
dk

dωk
f̃(ω), k ∈ ZZ+ (3.30)

Equation (3.30) is the multiplication of the original function by the power of

lnx.

Convolution Property

M(f(x).g(x), ω) =
1

2πi

∫ c+i∞

c−i∞
f̃(z0)g̃(ω − z0)dz0 (3.31)

Multiplicative Convolution Property

M(f(x) ∗ g(x), ω) =M
(∫ ∞

0

f(u)g
(x
u

) du
u
, ω

)
= f̃(ω)g̃(ω) (3.32)

M
(∫ ∞

0

f(x, u)g(u)du, ω

)
= f̃(ω)g̃(1− ω) =M(f(x) ◦ g(x), ω) (3.33)

Parseval’s Formula∫ ∞
0

f(x)g(x)dx =
1

2πi

∫ c+i∞

c−i∞
M(f(x), 1− ω)M(g(x), ω)dω (3.34)

Remark 3.1.3

(i) Equations (3.22) and (3.23) can be used in various ways to find the

effect of linear combinations of differential operators such that xk
(
d
dx

)m
,

k,m integers. The most remarkable result is

M

((
x
d

dx

)k
f(x), ω

)
= (−1)kωkf̃(ω) (3.35)

Other combinations can be computed. For example

M
(
dk

dxk
xkf(x), ω

)
= (−1)k(ω − k)kf̃(ω) (3.36)

These relations are easily verified on infinitely differentiable functions.
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(ii) The properties presented above are merely a preview of the transform’s

applicability on a function of variable. A detailed approach can be

found in Zemanian (1968), Sneddon (1972) and Fikioris (2007).

3.2 Multidimensional Mellin Transforms

For multidimensional problems one can extend the concept of the Mellin

transforms to functions of several variables. The double Mellin transform

was first introduced by Reed (1944), he proved the conditions for which the

transform and its inverse exist. For instance the double Mellin transform of

a function f(x1, x2) is defined by

M(f(x1, x2), ω1, ω2) := f̃(ω1, ω2)

=

∫ ∞
0

∫ ∞
0

f(x1, x2)xω1−1
1 xω2−1

2 dx1dx2

(3.37)

for all functions f so that the double integral converges (Applebaum (2009)

and Brychkov et al. (1992)). The inversion formula for the double Mellin

transform is given by

M−1(f̃(ω1, ω2)) =
1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
f̃(ω1, ω2)xω1

1 x
−ω2
2 dω1dω2 (3.38)

provided that the integral exists. A convolution-type theorem similar to the

one-dimensional case is of the form

M(f(x1, x2)g(x1, x2), ω1, ω2) =M
(∫ ∞

0

∫ ∞
0

f̃(u, ρ)

(
x1

u
,
x2

ρ

)
1

uρ
dudρ

)
= f̃(ω1, ω2)g̃(ω1, ω2) (3.39)
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More details on the double Mellin transforms may be found in Reed (1944),

Delavault (1961), Brychkov et al. (1992), Hai and Yakubovich (1992), Nguyen

and Yakubovich (1992), Eltayeb and Kilicman (2007).

Remark 3.2.1

(i) The definition of the multidimensional Mellin transform and its inverse

are given below (Brychkov et al. (1992)):

(a) Let X = (x1, x2, ..., xn)´ and W = (ω1, ω2, ..., ωn)´. For a function

f(x) ∈ IRn
+, the Multidimensional Mellin transform is the complex

function

M(f(X),W ) := f̃(W ) =

∫
IRn+

f(X)XW−1dX (3.40)

Equation (3.40) can also be written as

M(f((x1, ...xn), ω1, ..., ωn)) := f̃(ω1, ..., ωn)

=

∫
IRn+

f(x1, ...xn)xω1−1
1 ...xωn−1

n dx1...dxn

Therefore

M(f((x1, ...xn), ω1, ..., ωn) =

∫
IRn+

f(x1, ...xn)
n∏
j=1

x
ωj−1
j dxj (3.41)

Existence in the multidimensional case extends naturally from Lemma

3.1.1. Similar to Fourier and Laplace, an inversion theorem in the

multidimensional case holds under suitable conditions (Brychkov et al.

(1992) and Manuge (2013)).
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(b) Let X = (x1, x2, ..., xn)´, W = (ω1, ω2, ..., ωn)´ and f̃(W ) be analytic on

ϑ = ×nj=1ϑj, where ϑj are strips in C defined by ϑj = {aj + ibj : aj ∈

IR, bj = ±∞} with aj ∈ <(ωj). Suppose f(X) ∈ IRn
+ is a continuous

function, then the inversion formula for the multidimensional Mellin

transform is defined as:

M−1(f(W )) := f(X) =
1

(2πi)n

∫
ϑ

f̃(W )x−WdW (3.42)

Equation (3.42) implies that

M−1(f(ω1, ..., ωn)) = f(x1, ..., xn)

=
1

(2πi)n

∫
ϑ

f̃(ω1, ..., ωn)x−ω1
1 ...x−ωnn dω1...dωn

Thus

M−1(f(ω1, ..., ωn)) =
1

(2πi)2

∫
ϑ

f̃(ω1, ..., ωn)
n∏
j=1

x
−ωj
j dωj (3.43)

(ii) The properties of the Mellin transform for single function in subsection

3.1.2 can also be used to obtain solutions of the multidimensional Mellin

transform. For example the property in (3.25) for univariate Mellin

transform holds for the multidimensional Mellin transform.

M
(
xixj

d2

dxidxj
f(X),W

)
=

{
ωi(ωi − 1)f̃(W ), i = j

ωiωj f̃(W ), i 6= j.
(3.44)

where f(X) ∈ IRn
+ is twice differentiable w.r.t xi and xj and provided∏n

i=1 x
ωi
i f(X) vanishes as xi → 0+ and xi → +∞.
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3.3 Elements of the Laplace Transforms

Definition 3.3.1

Let f(x) be a piece-wise continuous function4 on every closed interval {a ≤

x ≤ b} ⊂ {0 ≤ x < ∞} there exists f : {0 ≤ x < ∞} → IR, f : x → f(x)

such that s ∈ IR. Then F (s) is called the Laplace transform of f(x) and is

given by

L(f(x))(s) := F (s) =

∫ ∞
0

f(x)e−sxdx (3.45)

whenever the integral exists. From (3.45), L(.) is called the Laplace transform

and s is called Laplace transform variable.

Definition 3.3.2

Let L(f(x))(s) = F (s) in the transformed s−space, that is, F (s) is the

Laplace transform of the function f(x). Then f(x) is called the inverse

Laplace transform of F (s). In that case,

L−1(F (s)) := f(x) =
1

2πi

∫ c+i∞

c−i∞
F (s)esxds (3.46)

3.3.1 Operational Properties of the Laplace Transforms

Some of the operational properties of the Laplace transform are presented

below;

4Intuitively, a piece-wise continuous function is a function that has a finite number of
breaks in it and does not blows up to ∞.
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Linearity of the Laplace Transforms

L(af(x) + bg(x))(s) =

∫ ∞
0

(af(x) + bg(x))e−sxdx

= aL(f(x))(s) + bL(g(x))(s)

(3.47)

Also, if F (s) = L(f(x))(s) and G(s) = L(g(x))(s), then

L−1(aF (s) + bG(s)) = af(x) + bg(x) (3.48)

The above property is intermediate from the definition and the linearity of

the definite integral.

Scaling Property

Let f(x) be a piece-wise continuous function with the Laplace transform

F (s). Then for a > 0. L(ax)(s) = 1
a
F
(
s
a

)
. That is

L(f(ax))(s) =

∫ ∞
0

e−sxf(ax)dx =
1

a

∫ ∞
0

e−( sa)f(z)dz =
1

a
F
(s
a

)
(3.49)

Commutativity Property

The Laplace transform is commutative. That is

F (s) ∗G(s) =

∫ x

0

f(x− ς)g(ς)dς =

∫ x

0

g(x− ς)f(ς)dς = G(s) ∗F (s) (3.50)

Shifting Property

L(eaxf(x))(s) =

∫ ∞
0

eaxe−sxdx =

∫ ∞
0

e(a−s)xdx = F (s− a) (3.51)

The Laplace Transforms on Differentiation

Let f(x), for x > 0, be a differentiable function with the derivative f ′(x)
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being continuous. Suppose that there exist constant M and X such that

|f(x)| ≤Meαx ∀ x ≥ X. If L(f(x))(s) = F (s), then

L(f(x))(s) =

∫ ∞
0

e−sxf ′(x)dx = lim
b→∞

∫ b

0

e−sxf ′(x)dx = sF (0)−f(0) (3.52)

Note that the condition |f(x)| ≤ Meαx, ∀ x ≤ X ⇒ limb→∞ f(b)e−sb = 0

for s > α.

Convolution Property

Let F (s) and G(s) denote the Laplace transforms of f(x) and g(x), respec-

tively. Then the product given by H(s) = F (s)G(s) is the Laplace transform

of the convolution of f and g is denoted by h(x) = (f ∗ g)(x) and has the

integral representation

h(x) = (f ∗ g)(x) =

∫ x

0

f(ς)g(x− ς)dς (3.53)

3.4 Elements of the Fourier Transforms

Definition 3.4.1

Suppose f(x) is absolutely integrable in (−∞,∞), that is,
∫∞
−∞ |f(x)|dx <∞,

then the Fourier transform of f(x) is defined as

F(f(x), θ) = f̃(θ) =

∫ ∞
−∞

f(x)eiθxdx (3.54)

Conversely the inverse Fourier transform of f̃(k) is defined as

f(x) =
1

2π

∫ ∞
−∞

f̃(θ)e−iθxdθ (3.55)
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3.4.1 Operational Properties of the Fourier Transforms

Let the Fourier transform of f(x) be defined as F(f(x), θ) = f̃(θ) then the

following properties hold as follows;

Scaling Property

F(f(cx), θ) =

∫ ∞
−∞

f(cx)eiθxdx =
1

|c|
f̃

(
θ

c

)
(3.56)

Translation Property

F(f(x− x0), θ) =

∫ ∞
−∞

f(x− x0)eiθxdx = eiθx0 f̃(θ) (3.57)

Fourier Transform of Derivatives

F
(
df(x)

dx
, θ

)
= iθf̃(θ) (3.58)

This process can be iterated for the nth derivative to yield

F
(
dnf(x)

dxn
, θ

)
= (iθ)nf̃(θ) (3.59)

Linearity Property

F((af(x) + bg(x)), θ) =

∫ ∞
−∞

(af(x) + bg(x))eiθxdx = af̃(θ) + bg̃(θ) (3.60)

Convolution Property

One of the most valuable properties of the Fourier transforms is that convo-

lution in the x-domain reduces to multiplication in the θ-domain.

Let f(x) and g(x) be two functions whose Fourier transforms are given by
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f̃(θ) and g̃(θ), respectively. The convolution of f(x) and g(x), denoted as

(f ∗ g)(x) is then given by

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y)dy (3.61)

(Note that the order of convolution is immaterial, that is, f ∗ g = g ∗ f)

F((f ∗ g)(x), θ) =

∫ ∞
−∞

∫ ∞
−∞

eiθxf(y)g(x− y)dxdy (3.62)

=

∫ ∞
−∞

∫ ∞
−∞

(eiθ(x−y)g(x− y)dx)eiθyf(y)dy (3.63)

=

∫ ∞
−∞

eiθyf(y)dy

∫ ∞
−∞

eiθ(x−y)g(x− y)dx (3.64)

= f̃(θ)g̃(θ) (3.65)

3.5 Stochastic Calculus

Due to the underlying random nature of financial markets, stochastic cal-

culus is an important tool for the modelling of financial processes. Even

though assets are not traded continuously and asset prices change by dis-

crete values, continuous-time and continuous variable processes are useful to

model these prices. The theoretical concepts presented in this section are

described on a more rigorous level in Wilmott et al. (1995), Karatzas and

Shreve (1998), Oksendal (2003), Protter (2007), Applebaum (2009), Ekha-

guere (2010).

Definition 3.5.1

A stochastic process Xt index T ⊆ IR is a collection of {Xt : t ∈ T} of ran-

dom variable on a probability space (Ω, IB,P). That is, ω → X(t, ω) ∈ IRd,
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ω → X(t, ω) = Xt(ω). Now, this means that Xt is an IRd-valued random

variable for each t ∈ T , Ω is a sample space, IB is a set of events and P is

the measure that assigns probabilities to each event and ω ∈ Ω.

Definition 3.5.2

A random process Wt, t ∈ [0,∞] is a Brownian motion if

(i) Wt has both stationary and independent increments, that is, if 0 <

t1 < ... < tn, then the random variables Wt1 ,Wt2−Wt1 , ...,Wtn−Wtn−1

are stochastically independent.

(ii) Wt is a continuous function of time with W0 = 0, almost surely.

(iii) For 0 ≤ s ≤ t,Wt−Ws is normally distributed with mean µ(t− s) and

variance σ2|t− s|. This property indicates that (Wt −Ws) ∼ N(µ(t−

s), σ2|t− s|), where µ and σ 6= 0 are real numbers.

Remark 3.5.1

(i) The (0, 1) Brownian motion is called the standard Brownian motion or

a Wiener process.

(ii) A (µ, σ) Brownian motion is also called a generalized Wiener process

or the Wiener Bachelier process.

Definition 3.5.3

If Xt is a Brownian motion with drift rate µ and variance rate σ2, the pro-

cess {Yt = eXt , t ≥ 0} is called a geometric Brownian motion or expected
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Brownian motion. The mean and the variance are given by E[Yt] = e

(
µ+σ2

2

)
t

and V ar[Yt] = e(2µ+σ2)t(eσ
2t − 1) respectively. Figure 3.1 below shows the

behaviour of two sample paths of geometric Brownian motion with different

parameters.
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Figure 3.1: Two sample paths of geometric Brownian motion, with different
parameters. The blue line has larger drift, the green line has larger variance.
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Definition 3.5.4

Let X : T → L0(Ω, IRd) be an adapted IR-valued stochastic process on a

filtered probability space (Ω, IB,P,F(IB)), where F(IB) = {IBt : t ∈ [0,∞)}

is called filtration of IB. As usual assume that F(IB) satisfies the condi-

tion of right continuity.5 Under this framework, the filtration represents an

increasing set of observable that becomes known to market participants as

time progresses. Then X is called a martingale if E(Xt \ IBs) = Xs (almost

surely, whenever t > s).

3.5.1 Stochastic Differential Equation

A stochastic differential equation is a differential equation in which one or

more of the terms is a stochastic process, thus resulting in a solution which

is itself a stochastic process. Stochastic processes under consideration will

be defined in terms of their stochastic differential equations

dXt = µ(Xt, t)Xtdt+ σ(Xt, t)XtdWt, X(t0) = x0 (3.66)

where µ(Xt, t) and σ(Xt, t) are called the drift and diffusion functions, respec-

tively from IR× [0, T ] to IR. The sufficient conditions for a unique (path-by-

path) solution are called the growth condition and the Lipschitz condition.

Growth Condition: There exists a constant K > 0 such that

µ2(x, t) + σ2(x, t) ≤ K(1 + x2), (x, t) ∈ IR× [0, T ] (3.67)

5No jump discontinuity occurs while approaching the limit from the right.
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Lipschitz Condition: There exists a constant L > 0 such that

|µ(x, t)− µ(y, t)|+ |σ(x, t)− σ(y, t)| ≤ L|x− y|, x, y ∈ IR, t ∈ [0, T ] (3.68)

For the proof of the above conditions (Karatzas and Shreve (1998), Øksendal

(2003)).

3.5.2 Itô’s Calculus

Let (Ω, IB, µ,F(IB)) be a filtered probability space and Wt is a Brownian

motion defined on this space. Then the stochastic process X = {Xt, t ≥ 0}

that solves

Xt = x0 +

∫ t

0

µ(Xs, s)ds+

∫ t

0

σ(Xs, s)dWs (3.69)

is called an Itô’s process provided the functions µ(Xt, t) and σ(Xt, t) satisfy

the following conditions

P

[∫ t

0

|µ(Xs, s)|ds <∞, ∀ t ≥ 0

]
= 1 (3.70)

P

[∫ t

0

|σ(Xs, s)|ds <∞, ∀ t ≥ 0

]
= 1 (3.71)

Remark 3.5.2

(i) The above conditions (3.70) and (3.71) required that the drift µ and

diffusion σ parameters do not vary much over time.

(ii) Since (3.66) can be represented as a sum of a Lebesgue and Itô integral,

Itô’s lemma provides its solution.6

6Alternate forms of this theorem can be stated when the function is driven by a Lévy
process or more general semimartingale of arbitrary dimension.
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Lemma 3.5.1 (Itô’s Lemma) (Proter (2004))

Let u(x, t) ∈ IR2 be twice differentiable in x and once in t. Then (3.66)

becomes

du(Xt, t) =

(
∂u(Xt, t)

∂t
+ µt

∂u(Xt, t)

∂x
+
σ2
t

2

∂2u(Xt, t)

∂x2

)
dt

+ σt
∂u(Xt, t)

∂x
dWt

(3.72)

in P , almost surely 7.

Remark 3.5.3

(i) Equation (3.72) has been proved to be vital in mathematical modelling

of derivative pricing. Then u(Xt, t) follows an Itô’s process with drift

rate
(
∂u(Xt,t)

∂t
+ µt

∂u(Xt,t)
∂x

+
σ2
t

2
∂2u(Xt,t)

∂x2

)
and the variance

(
σt

∂u(Xt,t)
∂x

)2

.

(ii) For t ∈ [0, T ], one-dimension Brownian motion becomes,

d ln(Xt) = d ln

(
Xt

X0

)
= σdWt + (µ− σ2

2
)dt

and hence the solution is given by

Xt = X0e

(
µ−σ

2

2

)
t+σWt

(iii) The above result is crucial for solving stochastic differential equation in

one-dimensional space and time. Arguably the best known application

of Itô’s lemma is for obtaining the solution to the Black-Scholes-Merton

equation (Black and Scholes (1973)).

7Note the form of (3.72); the solution of an Itô drift-diffusion process is an Itô drift-
diffusion process.
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3.5.3 Underlying Asset Price Dynamics

It is assumed that the underlying asset price St follows a geometric Brow-

nian motion with drift (expected return) µ and volatility σ. That is

dSt = µStdt+ σStdWt (3.73)

where Wt is a standard Brownian motion. Applying Itô’s lemma (3.72) to

u(St, t) = lnSt yields

d(lnSt) =

(
µ− σ2

2

)
dt+ σdWt (3.74)

It follows that lnSt is a Brownian motion with drift
(
µ− σ2

2

)
and variance

σ2. Therefore,

lnST − lnSt ∼ N
((

µ− σ2

2

)
(T − t), σ

√
T − t

)
(3.75)

where N is the normal distribution function. Therefore, the underlying asset

price St is lognormally distributed random variable.

Remark 3.5.4

(i) One important consequence of this lognormal assumption is that the

underlying asset price becomes zero at t = 0, then the asset remain

worthless for any time t ≤ s.

(ii) The explicit formula for the evolution of the underlying asset price at

t = 0 is given by

ST = S0 exp

[(
r − q − 1

2
σ2

)
T + σZ

√
T

]
(3.76)

where Z ∼ N (0, 1).
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(iii) The evolution of an underlying asset price in a geometric Brownian mo-

tion path using (3.76) is shown in Figure 3.2 below. Figure 3.2 gives a

better understanding of the stochastic behaviour of the underlying as-

sets and the assumption that stock returns are lognormally distributed.
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Figure 3.2: Simulation of a geometric Brownian motion path with the follow-
ing parameters S0 = 120, σ = 0.30, µ = 0.15, T = 1 and N = 300 as samples
drawn from the standard normal distribution.
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3.6 Derivative Security

Derivative security is defined as a financial asset whose value is derived in

part from the value and characteristics of some other underlying assets. This

term is very broad due to the introduction of complex and varying deriva-

tives in the markets. There are four (4) types of derivative securities namely:

options, forward, futures and swaps.

Definition 3.6.1

Vanilla options are actively traded on organized exchanges. They are also

subject to certain regularity and standardization conditions. Vanilla options

can be classified according to their exercise features as European options and

American options.

Definition 3.6.2

The European call(put) option gives the holder the right but not the obli-

gation to buy(sell) the underlying asset St at a given expiry date T and for

a fixed price K. European options are easier to study and can provide key

insights into pricing issues. Let the European call(put) option be denoted

by Ec(Ep). The payoff of the European call option Ec at the expiry date

T is given by Payoff(Ec) = max(ST − K, 0) = (ST − K)+. If ST < K, the

European will be worthless and the holder will not be able to exercise the

right. The payoff of the European put option Ep at the expiry date T is

given by Payoff(Ep) = max(K − ST , 0) = (K − ST )+. If ST > K, then the

European put option will be worthless and the holder will not exercise the
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right. The put-call parity is the relationship between the European call and

put, given by

Ec +Ke−rt = Ep + St (3.77)

where r denotes the risk-free interest rate and St denotes the underlying asset

price.

Remark 3.6.1

Consider the holder of a European call or put option. If the future

price of the underlying asset will be greater (call) or less (put) than

the strike price declared at insurance, the holder may buy or sell the

option for a positive return. Otherwise, the value of the option is zero

as shown in the Figures 3.3 and 3.4 below.
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Figure 3.3: The payoff for a European call option for different values of the
asset price St, given strike price K = $100.
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Figure 3.4: The payoff for a European put option for different values of the
asset price St, given strike price K = $100.
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Definition 3.6.3

An American option gives a financial agent the right, but not obligation to

buy (if it is a call option) or to sell (if it is a put option) an underlying assets

on or prior to the expiry date T at the specified price called the strike price

K. Most of the options traded on the exchanges are of the American type.

Let the price of the American call(put) option be denoted by Ac(Ap).

The payoff of the American call option Ac at the expiry date T is given by

Payoff(Ac) = max(ST −K, 0) = (ST −K)+. The payoff of the American put

option Ap at the expiry date T is given by Payoff(Ap) = max(K − ST , 0) =

(K − ST )+. The price boundary and the put-call parity for the American

option is given by

St −K ≤ Ac − Ap ≤ St −Ke−rt (3.78)

Definition 3.6.4

An exotic option is a derivative which has features making it more complex

than commonly traded products such as vanilla options. Exotic options are

generally traded over the counter. Some of these options include Asian op-

tions, where the payoff depends on the average stock price, barrier options

that become worthless if the stock price goes above or below a prescribed

value and others like power, one-touch, rainbow, forward start, chooser, look-

back, contingent premium and quanto options.
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3.6.1 Power Options

Power option is a financial derivative in which the payoff at time to

expiry is related to the nth power of the underlying asset price. Because

of the non-linear characteristics of these options, they are appropriate for

hedging non-linear price risks. Power options preserve volatility exposure

better than plain vanilla options if the underlying moves significantly in the

same direction. These options offer flexibility to investors and of practical

interest since many OTC-traded options exhibit such a payoff structure. For

example, an option whose payoff is a polynomial function of the Nikkei level

at the expiry was issued in Tokyo (Heynen and Kat (1996)). Bankers Trust

in Germany has issued capped foreign-exchange power options with power

exponent two (Topper (1999), Zhang et al. (2016)). More examples can be

found in Tompkins (1999) and Macovschi and Quittard-Pinon (2006). Power

option comes in two forms namely power call option and power put option. A

power call option is an option with non-linear payoff given by the difference

between underlying asset price at expiry raised to a strictly positive power

and the strike price. A power put option is an option with non-linear payoff

given by the difference between the strike price and underlying asset price

at expiry raised to a strictly positive power. For a power option on the

underlying asset price SnT with strike price K and time to expiry T , the

payoff for the power call option is given by

P n
c (SnT , T ) = max(SnT −K, 0) = (SnT −K)+ (3.79)

45



UNIV
ERSIT

Y O
F 

IB
ADAN LI

BRARY

and the payoff for the power put option is given by

P n
p (SnT , T ) = max(K − SnT , 0) = (K − SnT )+ (3.80)

where n is some power (n > 0)

Remark 3.6.2

(i) For n = 1, (3.79) and (3.80) become the payoffs for plain vanilla call and

put options given by Pc(ST , T ) = (ST−K)+ and Pc(ST , T ) = (K−ST )+

respectively.

(ii) For n > 0, power option allows parties to negotiate the underlying

asset price, strike price, time to expiry and other features. It also

gives investors the opportunity to trade on a large scale with expanded

or eliminated position limit and is of practical interest since over-the-

counter (OTC) traded options exhibit such a payoff structure.

(iii) For n < 1, the payoff curve for power call option becomes concave and

thus the option can have negative time value. That is

Snt < P n
c (SnT , T ).

(iv) For n > 1, the payoff curve for power put option becomes concave and

thus the option can have negative time value. That is

Snt > P n
p (SnT , T ).

(v) For power call option, the option value becomes very large as n in-

creases.
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(vi) For power put option, the option value becomes very large as n de-

creases.

More details on exotic and vanilla options can be found in Fisher (1993),

Wilmott et al. (1995), Hull (1997), Taleb (1997), Kwok (1998), Zhang (1998)

and Bellalah (2009).

3.7 Black-Scholes-Merton Model

Assume that the price of a risky asset St at current time t is given by

St = S0e
Xt (3.81)

where Xt is the Brownian motion. Imposing general conditions on some

function f(St, t), a partial differential equation representing the option price

can be obtained. Otherwise known as the Black-Scholes-Merton equation, it

provides the price of European options when the appropriate boundary con-

ditions are imposed. For geometric Brownian motion represented by (3.66),

a continuous dividend rate q is included in the model by setting

µ = (r − q). Then (3.73) becomes

dSt = (r − q)Stdt+ σStdWt (3.82)

Once again, applying the Itô’s lemma to a function f(St, t) representing the

option value with dividend yield q leads to

df(St, t) =

(
∂f(St, t)

∂t
+ (r − q)St

∂f(St, t)

∂St
+
σ2S2

t

2

∂2f(St, t)

∂S2
t

)
dt

+ σSt
∂f(St, t)

∂St
dWt

(3.83)
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By constructing a self financing portfolio Π = f(St, t) − ∆St (with ∆ =

∂f(St,t)
∂St

) consisting of an option f(St, t) and underlying asset St, therefore

dΠ =

(
∂f(St, t)

∂t
− qSt

∂f(St, t)

∂St
+
σ2S2

t

2

∂2f(St, t)

∂S2
t

)
dt (3.84)

Under no-arbitrage condition, the portfolio must earn risk-free rate of return

such that dΠ = rΠdt (Wilmott (1995), Hull (2002), Øksendal (2003)). Hence,

dΠ = r

(
f(St, t)−

St∂f(St, t)

∂St

)
dt (3.85)

By combining (3.84) and (3.85), then the Black-Scholes-Merton equation is

obtained as

∂f(St, t)

∂t
+ (r − q)St

∂f(St, t)

∂St
+
σ2S2

t

2

∂2f(St, t)

∂S2
t

− rf(St, t) = 0 (3.86)

Remark 3.7.1

(i) The constant dividend yield q is most suitable for options on foreign

currencies; and it can be easily extended to the case of options on

commodities as well.

(ii) Note that the Black-Scholes-Merton equation does not involve the drift

µ and therefore, the option price does not depend on the risk preferences

of the investor.

(iii) Setting q = 0 in (3.86) leads to the celebrated Black-Scholes equation

derived by Black and Scholes (1973).
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(iv) Setting f(St, t) = Ec(St, t) in (3.86) and by means of change of vari-

ables technique, the Black-Scholes-Merton model for the price of the

European call option denoted by Ec(St, t) is obtained as

Ec(St, t) = Se−q(T−t)N (d1)−Ke−r(T−t)N (d2) (3.87)

where

d1 =
ln
(
St
K

)
+
(
r − q + σ2

2

)
(T − t)

σ
√
T − t

(3.88)

d2 = d1 − σ
√
T − t =

ln
(
St
K

)
+
(
r − q − σ2

2

)
(T − t)

σ
√
T − t

(3.89)

(v) The Black-Scholes-Merton model for the price of the European put

option denoted by Ep(St, t) can be obtained directly using the put-call

parity relationship for European options (3.77) as

Ep(St, t) = Ke−r(T−t)N (−d2)− Se−q(T−t)N (−d1) (3.90)

with d1 and d2 as defined in (3.88) and (3.89), respectively.

(vi) More details on the derivation of the Black-Scholes model for the price

of European call and put options on stocks that pay continuous divi-

dend yield can be found in (Merton (1973)).
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Chapter 4

Results

In this chapter, It was shown that the stock dynamics of power options fol-

lowed a lognormal distribution. The generalized fundamental valuation equa-

tion for the price of power options with non-dividend and dividend yields,

respectively was derived. By means of risk-free probability measure, the val-

uation formula for power call option in the Black-Scholes model framework

was obtained. The Mellin transform method was used to obtain the integral

representations for the price of the European power put option which pays

both non-dividend and dividend yields, respectively. It was also shown that

the expression for the European power put option reduced to the fundamen-

tal valuation formula by means of the convolution property of the Mellin

transform method. The Mellin transform method was extended to obtain

the integral representations for the price and the optimal exercise bound-

ary (free boundary) of the American power put option with non-dividend

and dividend yields, respectively. It was shown that the integral equation

of the American power options matched with the existing characterizations
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of the integral equations of Kim (1990) and Carr et al. (1992) for n = 1.

The integral representation for the price of the American power put option

with non-dividend and dividend yields, respectively was used to derive the

optimal exercise boundary and the analytical valuation formula for the per-

petual American power put option. A closed-form solution for the price of

the American power put option with dividend yield was obtained. The Mellin

transform method in higher dimensions was used to obtain the integral rep-

resentation for the price of put options on a basket of multi-dividend paying

stocks. Other related methods for options valuation were considered. Some

numerical experiments and discussion of results were also presented.

4.1 Power Options Valuation

Power options can be classified as European or American. European

power option can be exercised only at the expiry date while American power

option can be exercised before or at the expiry date. The first result on power

option showed that the stock dynamics followed a lognormal distribution.

Theorem 4.1.1

Let Snt denote the underlying asset price for power option, σ the volatility, r

the risk-free interest rate, n the power of the option, q the dividend yield and

Wt the Brownian motion. If the underlying asset price Snt follows a random

process in

dSnt =

(
n(r − q) +

n(n− 1)σ2

2

)
Snt dt+ nσSnt dWt (4.1)
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then the explicit formula for the evolution of the underlying asset price is

given by

SnT = Sn0 exp

(
n

(
r − q − σ2

2

)
T + nσWT

)
(4.2)

Proof: Let

u(Snt , t) = lnSnt (4.3)

Differentiating (4.3) yields

∂u(Snt , t)

∂Snt
=

1

Snt
(4.4)

∂2u(Snt , t)

∂(Snt )2
=
−1

(Snt )2
(4.5)

∂u(Snt , t)

∂t
= 0 (4.6)

Recall from the Itô’s lemma (3.72) for plain vanilla option and using (4.1)

for any derivative u(Snt , t) leads to

du(Snt , t) =

(
∂u(Snt , t)

∂t
+ g(Snt , t)

∂u(Snt , t)

∂Snt
+
h2(Snt , t)

2

∂2u(Snt , t)

∂(Snt )2

)
dt

+ h(Snt , t)
∂u(Snt , t)

∂Snt
dWt

(4.7)

From (4.1),

g(Snt , t) =

(
n(r − q) +

1

2
n(n− 1)σ2

)
Snt , h(Snt , t) = nσSnt (4.8)

Substituting (4.3), (4.4), (4.5), (4.6) and (4.8) into (4.7) and rearranging the

terms yields

d(lnSnt ) =

((
n(r − q) +

1

2
n(n− 1)σ2

)
Snt

(
1

Snt

))
dt

+

(
1

2
n2σ2(Snt )2

(
−1

(Snt )2

))
dt+ nσSnt

(
1

Snt

)
dWt

(4.9)
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Therefore,

d(lnSnt ) =

(
n(r − q)− 1

2
nσ2

)
dt+ nσdWt (4.10)

Thus, lnSnt is a Brownian motion with drift parameter
(
n(r − q)− 1

2
nσ2
)

and

variance parameter (nσ)2. To derive an explicit formula for the evolution of

the underlying asset price, Integrating (4.10) from 0 to T to obtain∫ T

0

d(lnSnt ) =

∫ T

0

(
n(r − q)− 1

2
nσ2

)
dt+

∫ T

0

nσdWt (4.11)

lnSnT − lnSn0 =

(
n(r − q)− 1

2
nσ2

)
T + nσWT (4.12)

ln

(
SnT
Sn0

)
= n

(
r − q − 1

2
σ2

)
T + nσWT (4.13)

Taking the exponential of both sides of (4.13) leads to a relation(
SnT
Sn0

)
= exp

[
n

(
r − q − 1

2
σ2

)
T + nσWT

]
(4.14)

Therefore,

SnT = Sn0 exp

[
n

(
r − q − 1

2
σ2

)
T + nσWT

]
(4.15)

Equation (4.15) is the required explicit formula for the evolution of the un-

derlying asset price.

Remark 4.1.1

(i) Equation (4.15) can also be written as

SnT = Sn0 exp

[
n

(
r − q − 1

2
σ2

)
T + nσZ

√
T

]
(4.16)

where Z ∼ N(0, 1)1.

1This equation (4.16) showed that the stock dynamic follows a lognormal distribution.
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(ii) Setting n = 1, (4.16) becomes

ST = S0 exp

[(
r − q − 1

2
σ2

)
T + σZ

√
T

]
(4.17)

Equation (4.17) shows that plain vanilla option follows a lognormal

distribution.

(iii) For the case of non-dividend yield, (4.16) and (4.17) become, respec-

tively

SnT = Sn0 exp

[
n

(
r − 1

2
σ2

)
T + nσZ

√
T

]
(4.18)

ST = S0 exp

[(
r − 1

2
σ2

)
T + σZ

√
T

]
(4.19)

The generalized fundamental valuation equation for the price of power option

was given by the following result.

Theorem 4.1.2

Let the underlying asset price Snt follows a lognormal distribution

dSnt =

(
n(r − q) +

n(n− 1)σ2

2

)
Snt dt+ nσSnt dWt

Using the Itô’s lemma given by (4.7), then the Black-Scholes-Merton-like

partial differential equation for any derivative v(Snt , t) written on Snt for power

option is obtained as

∂v(Snt , t)

∂t
+ n

(
(r − q) +

(n− 1)σ2

2

)
Snt
∂v(Snt , t)

∂Snt

+
1

2
σ2n2(Snt )2∂

2v(Snt , t)

∂(Snt )2
= rv(Snt , t) (4.20)
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Proof: Let us write the value of the power option as

v(Snt , t, σ, q,K, µ, T, r), where Snt , t, σ, q,K, µ, T and r are underlying asset

price, current time, volatility, dividend yield, strike price, drift parameter,

time to expiry and risk-free interest rate, respectively. As the price of the

underlying asset falls by the amount of the dividend yield, the asset price

dynamics based on the geometric Brownian motion becomes:

dSnt
Snt

=

(
n(r − q) +

n(n− 1)σ2

2

)
dt+ nσdWt (4.21)

Using the Itô lemma given by (4.7) with

g(Snt , t) =

(
n(r − q) +

n(n− 1)σ2

2

)
Snt , h(Snt , t) = nσSnt (4.22)

and setting u(Snt , t) = v(Snt , t) yields

dv(Snt , t) =
∂v(Snt , t)

∂t
dt+

(
n(r − q) +

n(n− 1)σ2

2

)
Snt
∂v(Snt , t)

∂Snt
dt

+
(nσSnt )2

2

∂2v(Snt , t)

∂(Snt )2
dt+ nσSnt

∂v(Snt , t)

∂Snt
dWt

(4.23)

Using the assumption of Baz and Chacko (2004) as follows: Assume that the

dynamics of marginal utility in the economy at time t are determined by

dεt
εt

= f(εt, S
n
t )dt+ g(εt, S

n
t )dWt

where f(εt, S
n
t ) = −r and g(εt, S

n
t ) = (r−µ)

σ
. Hence the dynamics of the

pricing kernel is obtained as

dεt
εt

= −rdt+
(r − µ)

σ
dWt (4.24)
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The stochastic process for v(Snt , t)εt is given by

d(v(Snt , t)εt) = εtdv(Snt , t) + v(Snt , t)dεt + d〈v(Snt , t), εt〉 (4.25)

Substituting (4.23) and (4.24) into (4.25) leads to

d(v(Snt , t)εt) = εt

(
∂v(Snt , t)

∂t
dt+

(
n(r − q) +

n(n− 1)σ2

2

)
Snt
∂v(Snt , t)

∂Snt
dt

)
+ εt

(
(nσSnt )2

2

∂2v(Snt , t)

∂(Snt )2
dt+ nσSnt

∂v(Snt , t)

∂Snt
dWt

)
+ v(Snt , t)

(
−rdt+

(r − µ)

σ

)
εtdWt

d(v(Snt , t)εt) = εt

(
∂v(Snt , t)

∂t
+

(
n(r − q) +

n(n− 1)σ2

2

)
Snt
∂v(Snt , t)

∂Snt

)
dt

+ εt

(
(nσSnt )2

2

∂2v(Snt , t)

∂(Snt )2
− rv(Snt , t)

)
dt

+ εt

(
nσSnt

∂v(Snt , t)

∂Snt
+ v(Snt , t)

(r − µ)

σ

)
dWt

(4.26)

Using the fact that v(Snt , t)εt is martingale, then the drift coefficient is zero.

Therefore

∂v(Snt , t)

∂t
+

(
n(r − q) +

n(n− 1)σ2

2

)
Snt
∂v(Snt , t)

∂Snt

+
(nσSnt )2

2

∂2v(Snt , t)

∂(Snt )2
− rv(Snt , t) = 0

(4.27)

Equation (4.27) is called the generalized fundamental valuation equation for

the price of power option with dividend yield.

Remark 4.1.2

(i) Alternative method of obtaining the fundamental valuation equation

(4.27) using Girsanov’s theorem was shown in the following result (Baz
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and Chacko (2004)).

Theorem 4.1.3

When an economy with a pricing kernel defined by (4.24) is transformed

to a risk-neutral economy, any stochastic process Xt (whether Xt is the

price of a traded security or not) whose dynamics are characterized by

dXt

Xt

= h1(Xt)dt+ h2(Xt)dWt

in the original economy becomes transformed to the process

dXt

Xt

= (h1(Xt)− g(εt, S
∗
t )h2(Xt))dt+ h2(Xt)dW

∗
t (4.28)

where W ∗
t is simply a Brownian motion in the risk-neutral economy.

Applying the Girsanov’s theorem gives the stochastic process for the

price of power option of the form

dv(Snt , t)

v(Snt , t)
=

1

v(Snt , t)

(
∂v(Snt , t)

∂t

)
dt

+
1

v(Snt , t)

((
n(µ− q) +

1

2
n(n− 1)σ2

)
Snt
∂v(Snt , t)

∂Snt

)
dt

+
1

v(Snt , t)

(
n2σ2

2
(Snt )2∂

2v(Snt , t)

∂(Snt )2
+ n(r − µ)Snt

∂v(Snt , t)

∂Snt

)
dt

+
1

v(Snt , t)

(
nσSnt

∂v(Snt , t)

∂Snt

)
dWt

=
1

v(Snt , t)

(
∂v(Snt , t)

∂t
+

(
n(r − q) +

1

2
n(n− 1)σ2

)
Snt
∂v(Snt , t)

∂Snt

)
dt

+
1

v(Snt , t)

((
n2σ2

2
(Snt )2∂

2v(Snt , t)

∂(Snt )2

)
dt+

(
nσSnt

∂v(Snt , t)

∂Snt

)
dWt

)
(4.29)
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In a risk neutral world, the expected return of any traded security must

equal to the risk-free interest rate. That is

r = E∗t

[
dv(Snt , t)

v(Snt , t)

]
(4.30)

The expected instantaneous return of
dv(Snt ,t)

v(Snt ,t)
is simply the drift term

of the stochastic process. So,

r =
1

v(Snt , t)

(
∂v(Snt , t)

∂t
+ n

(
(r − q) +

1

2
(n− 1)σ2

)
Snt
∂v(Snt , t)

∂Snt

)

+
1

v(Snt , t)

(
n2σ2

2
(Snt )2∂

2v(Snt , t)

∂(Snt )2

)
Hence,

∂v(Snt , t)

∂t
+ n

(
(r − q) +

1

2
(n− 1)σ2

)
Snt
∂v(Snt , t)

∂Snt

+
n2σ2

2
(Snt )2∂

2v(Snt , t)

∂(Snt )2
− rv(Snt , t) = 0

is the required fundamental valuation equation.

(ii) For the case of non-dividend yield where q = 0, (4.27) becomes

∂v(Snt , t)

∂t
+ n

(
r +

1

2
(n− 1)σ2

)
Snt
∂v(Snt , t)

∂Snt

+
n2σ2

2
(Snt )2∂

2v(Snt , t)

∂(Snt )2
− rv(Snt , t) = 0

(4.31)

4.1.1 Valuation of Power Options in the Black-Scholes-
Like Model

A new approach to derive the Black-Scholes-like model for the valuation

of power call option via the risk-free probability measure was presented in
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the following result.

Theorem 4.1.4

By means of the risk-free probability measure Q, the Black-Scholes-like val-

uation formula for the price of power call option is given by

V n
c (Snt , t) = Snt e

(n−1)
(
r+nσ2

2

)
(T−t)N (d1,n(Snt , K, (T − t)))

−Ke−r(T−t)N (d2,n(Snt , K, (T − t)))
(4.32)

with

d1,n(Snt , K, (T − t)) =
ln
(
Snt
K

)
+ n

(
r +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√

(T − t)

and

d2,n(Snt , K, (T − t)) = d1,n(Snt , K, (T − t))− nσ
√

(T − t)

where N (.) is the normal cumulative distribution function of random vari-

able.

Proof: The value of the power call option under the risk-free probability

measure Q is given by

V n
c (Snt , t) = EQ

[
e−r(T−t)P n

c (SnT , T )
]

(4.33)

where n is positive and E is the expectation. Substituting the payoff at time

to expiry T of a power option with exercise price K on an underlying asset

SnT given by (3.79) into (4.33) yields

V n
c (Snt , t) = EQ

[
e−r(T−t)(SnT −K)+

]

59



UNIV
ERSIT

Y O
F 

IB
ADAN LI

BRARY

The explicit formula for the evolution of the underlying asset price in (4.16)

for the case t 6= 0 can be written as

SnT = Snt exp

[
n

(
r − q − 1

2
σ2

)
(T − t) + nσZ

√
T − t

]
The expected value of the stock price at time to expiry T under the risk-free

probability measure Q is obtained as

EQ
[
e−r(T−t)SnT

]
=

∫ ∞
−∞

1√
2π
e−r(T−t)e

−1
2
z2SnTdZ

Using the last two relations, (4.33) becomes

V n
c (Snt , t) =

∫ ∞
−∞

e−r(T−t)e−
z2

2

(
Snt e

(
nZσ
√

(T−t)+n
(
r−σ

2

2

)
(T−t)

)
−K

)+

√
2π

dZ

(4.34)

Since

Z ≥
− ln

(
Snt
K

)
+
(
r − σ2

2

)
(T − t)

σ
√

(T − t)
= −d2,n(Snt , K, (T − t)) = −d2,n

this implies that

Snt exp

(
nzσ

√
(T − t) + n

(
r − σ2

2

)
(T − t)

)
≥ K

By changing the lower bound of integration, (4.34) yields

V n
c (Snt , t) =

∫ ∞
−d2,n

e−r(T−t)e−
z2

2

(
Snt e

(
nZσ
√

(T−t)+n
(
r−σ

2

2

)
(T−t)

)
−K

)
√

2π
dZ

(4.35)

Equation (4.35) can be expressed in the form

V n
c (Snt , t) = A1 + A2 (4.36)
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where the first integral is

A1 = e−r(T−t)
∫ ∞
−d2,n

e−
Z2

2

(
Snt e

(
nZσ
√

(T−t)+n
(
r−σ

2

2

)
(T−t)

))
√

2π
dZ

and the second integral is

A2 = −e−r(T−t)
∫ ∞
−d2,n

1√
2π
Ke−

Z2

2 dZ

To find more classic representations of A1 and A2. Observe that the second

integral

A2 = −e−r(T−t)
∫ ∞
−d2,n

1√
2π
Ke−

Z2

2 dZ

= −e−r(T−t)
∫ d2,n

−∞

1√
2π
Ke−

u2

2 du

with the transformation Z = −u.

Thus,

A2 = −Ke−r(T−t)N (d2,n) (4.37)

Simplifying A1 further yields,

A1 = Snt e
(n−1)(r+ 1

2
nσ2)(T−t)

∫ ∞
−d2,n

1√
2π
e−

1
2

(Z−nσ
√

(T−t))2dZ

Substituting Z = v + nσ
√

(T − t) into the last equation above, therefore

A1 = Snt e
(n−1)(r+ 1

2
nσ2)(T−t)

∫ ∞
−d2,n−nσ

√
(T−t)

1√
2π
e−

1
2
v2dv

Setting v = −u, the second integral becomes

A1 = Snt e
(n−1)(r+ 1

2
nσ2)(T−t)

∫ d2,n+nσ
√

(T−t)

−∞

1√
2π
e−

1
2
u2du
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Therefore,

A1 = Snt e
(n−1)(r+ 1

2
nσ2)(T−t)N (d1,n) (4.38)

where d1,n = d2,n + nσ
√

(T − t). Thus, using (4.36), (4.37) and (4.38) with

the fact that d1,n = d1,n(Snt , K, (T − t)), d2,n = d2,n(Snt , K, (T − t)), the valua-

tion formula for the price of power call option in the Black-Scholes framework

with constant volatility, σ and risk-free interest rate, r is obtained as

V n
c (Snt , t) = Snt e

(n−1)
(
r+nσ2

2

)
(T−t)N (d1,n(Snt , K, (T − t)))

−Ke−r(T−t)N (d2,n(Snt , K, (T − t)))
This completes the proof.

Remark 4.1.3

(i) By means of the put-call parity given by

V n
c (Snt , t) +Ke−r(T−t) = V n

p (Snt , t) + Snt e
(n−1)

(
r+nσ2

2

)
(T−t)

The price of power put option is obtained as

V n
p (Snt , t) = Ke−r(T−t)N (−d2,n(Snt , K, (T − t)))

− Snt e
(n−1)

(
r+nσ2

2

)
(T−t)N (−d1,n(Snt , K, (T − t)))

(4.39)

(ii) Equations (4.32) and (4.39) are for the cases of non-dividend paying

stock.

(iii) For the case of dividend paying stock, (4.32) and (4.39) become the

valuation formula for the price of power call and put options in the

Black-Scholes-Merton-like framework respectively.

V n
c (Snt , t) = Snt e

(
(n−1)r−nq+n(n−1)σ2

2

)
(T−t)
N (d1,n(Snt , K, (T − t)))

−Ke−r(T−t)N (d2,n(Snt , K, (T − t)))
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and

V n
p (Snt , t) = Ke−r(T−t)N (−d2,n(Snt , K, (T − t)))

− Snt e
(

(n−1)r−nq+n(n−1)σ2

2

)
(T−t)
N (−d1,n(Snt , K, (T − t)))

with

d1,n(Snt , K, (T − t)) =
ln
(
Snt
K

)
+ n

(
r − q +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√

(T − t)

and

d2,n(Snt , K, (T − t)) = d1,n(Snt , K, (T − t))− nσ
√

(T − t)

(iv) For n = 1, (4.32) and (4.39) become the fundamental valuation for-

mula for plain vanilla call and put options with non-dividend yields,

respectively.

4.1.2 Closed-Form Solutions for the Payoffs of Power
Call and Put Options

The closed-form solutions for the payoffs of power call and put options

was given by the following result.

Theorem 4.1.5

By means of the Mellin transforms, the closed-form solutions for the payoffs

of power call and put options are obtained as

M(P n
c (SnT , T )) =

K1−ω

ω(ω − 1)
(4.40)

and

M(P n
p (SnT , T )) =

K1+ω

ω(ω + 1)
(4.41)
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respectively.

Proof: Consider the payoff of the power call option given by (3.79) as

P n
c (SnT , T ) = (SnT −K)+

Using the definition of the Mellin transform (3.1), the closed-form solution

for the payoff of the power call option is obtained as follows:

M(P n
c (SnT , T ),−ω) =

∫ ∞
0

P n
c (SnT , T )(SnT )−ω−1dSnT

=

∫ ∞
0

(SnT −K)+(SnT )−ω−1dSnT

=

∫ ∞
K

(SnT −K)(SnT )−ω−1dSnT

=

∫ ∞
K

SnT (SnT )−ω−1dSnT −
∫ ∞
K

K(SnT )−ω−1dSnT

=
K1−ω

ω(ω − 1)

(4.42)

Equation (4.40) is established. Next, consider the payoff of the power put

option given by (3.80) as

P n
p (SnT , T ) = (K − SnT )+
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Once again apply (3.1) to get the closed-form solution for the payoff of the

power put option as:

M(P n
p (SnT , T ), ω) =

∫ ∞
0

P n
p (SnT , T )(SnT )ω−1dSnT

=

∫ ∞
0

(K − SnT )+(SnT )ω−1dSnT

=

∫ K

0

(K − SnT )(SnT )ω−1dSnT

=

∫ K

0

K(SnT )ω−1dSnT −
∫ K

0

(SnT )ωdSnT

=
K1+ω

ω(ω + 1)

(4.43)

This completes the proof.

Remark 4.1.4

Equations (4.42) and (4.43) hold for the case where the strike price K

is used as transform variable.

4.1.3 Numerical Examples

Example 1

Consider a power option with Six months to expiration, underlying asset

price of $10, power of 2, strike price of $100, risk-free interest rate of 8%,

continuous dividend yield of 6% and expected volatility of the stock of 30%.

Find the

(i) value of the power call option

(ii) value of the power put option
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Solution:

St = $10, K = $100, n = 2, r = 0.08, q = 0.06, σ = 0.3, t = 0, T = 0.5

Using the analytic formula for the price of power call option given by

V n
c (Snt , t) = Snt e

(
(n−1)r−nq+n(n−1)σ2

2

)
(T−t)
N (d1,n(Snt , K, (T − t)))

−Ke−r(T−t)N (d2,n(Snt , K, (T − t)))

with

d1,n(Snt , K, (T − t)) =
ln
(
Snt
K

)
+ n

(
r − q +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√

(T − t)

and

d2,n(Snt , K, (T − t)) = d1,n(Snt , K, (T − t))− nσ
√

(T − t)

Therefore,

d1,2(S2
t , K, (T − t)) =

ln
(
S2
t

K

)
+ 2

(
r − q +

(
3
2

)
σ2
)

(T − t)

2σ
√

(T − t)

d1,2(S2
t , K, (T − t)) =

ln
(

102

100

)
+ 2

(
0.08− 0.06 +

(
3
2

)
0.32

)
(0.5)

2(0.3)
√

0.5
= 0.3653,

d2,2(S2
t , K, (T − t)) = d1,2(S2

t , K, (T − t))− 2σ
√

(T − t)

= 0.3653− 2(3)
√

0.5 = −0.0589

N (d1,2(S2
t , K, (T − t))) = 0.6426,N (d2,2(S2

t , K, (T − t))) = 0.4765

The value of the power call option is obtained as

V 2
c (S2

t , t) = S2
t e

(r−2q+σ2)(T−t)N (d1,2(S2
t , K, (T − t)))

−Ke−r(T−t)N (d2,2(S2
t , K, (T − t)))
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V 2
c (S2

t , t) = 102(0.6426)e(0.08−0.12+0.32)(0.5) − 100(0.4765)e−0.08(0.5)

= 20.1051

Next, to get the value of the power put option given by

V n
p (Snt , t) = Ke−r(T−t)N (−d2,n(Snt , K, (T − t)))

− Snt e
(

(n−1)r−nq+n(n−1)σ2

2

)
(T−t)
N (−d1,n(Snt , K, (T − t)))

For n = 2, (4.39) yields

V 2
p (S2

t , t) = Ke−r(T−t)N (−d2,2(S2
t , K, (T − t)))

− S2
t e

(r−2q+σ2)(T−t)N (−d1,2(S2
t , K, (T − t)))

where

N (−d1,2(S2
t , K, (T − t))) = 0.3574,N (−d2,2(S2

t , K, (T − t))) = 0.5235

Therefore, the value of the power put option is obtained as

V 2
p (S2

t , t) = 100(0.5235)e−0.08(0.5)−102(0.3574)e(0.08−2(0.06)+0.32)(0.5) = 13.6525

Example 2

Consider the valuation of the power call and put options with the following

parameters; St = $10, K = $100, σ = {0.10, 0, 15, 0.20, 0.25, 0.30},

r = 0.08, q = 0.06, T = 0.5, t = 0, n = {1.90, 1.95, 2.00, 2.05, 2.10}

Calculate the call and put values of the power options.

Solution:

The results generated using the above parameters for power call and put

options are shown in the Tables 4.1 and 4.2, respectively.
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Table 4.1: The price of power call option.

n/σ 0.10 0.15 0.20 0.25 0.30
1.90 0.3102 1.4522 3.2047 5.3446 7.7621
1.95 1.9320 4.2990 6.9724 9.8596 12.9351
2.00 6.7862 9.8585 13.0957 16.5067 20.1051
2.05 15.8587 18.6128 21.8980 25.5429 29.4939
2.10 28.4341 30.4628 33.4555 37.1126 41.2849

Table 4.2: The price of power put option.

n/σ 0.10 0.15 0.20 0.25 0.30
1.90 18.27382 18.9972 20.1600 21.5351 23.0079
1.95 10.2890 12.1467 14.1021 16.9575 17.9810
2.00 4.3539 6.8086 9.1746 11.4533 13.6525
2.05 1.3089 3.3161 5.5476 7.8230 10.0774
2.10 0.2745 1.4031 3.1247 5.1286 7.2508
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Remark 4.1.5

(i) From Table 4.1, it is observed that the higher the volatility, the higher

the values of the power call option.

(ii) From Table 4.2, it is observed that the higher the volatility, the higher

the values of the power put option.

4.2 The Mellin Transform Method for the Val-

uation of European Power Put Option

with Non-Dividend Yield

The Mellin transform method for the valuation of European power put

option which pay no dividend yield and its extension for the derivation of

the Black-Scholes-like model by means of the convolution property was pre-

sented in this section. Despite the great interest for the valuation of option

via transform methods, the Mellin transform method has received petite at-

tention. This may relatively be because of the partial differential equation

for pricing is formulated in terms of log-prices. Although the introduction

of the Mellin transform method to options valuation is relatively new. The

integral representation for the price of the European power put option with

non-dividend yield via the Mellin transform method was given by the follow-

ing result.

Theorem 4.2.1

Let Snt be the price of the underlying asset, K be the strike price, r be the
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risk-free interest rate and T be the time to expiry. Assume Snt yields no div-

idend, then the integral representation for the price of the European power

put option P n
E(Snt , t) is given by

P n
E(Snt , t) =M−1(P̃ n

E(ω, t))

= (2πi)−1

∫ c+i∞

c−i∞

K1+ω

ω(ω + 1)

e
1
2
n2σ2(ω2+α1ω−α2)(T−t)

(Snt )ω
dω

Proof: Setting v(Snt , t) = P n
E(Snt , t) and q = 0 in (4.27) yields the partial

differential equation for the price of European power put options of the form

∂P n
E(Snt , t)

∂t
+ n

(
r +

(n− 1)σ2

2

)
Snt
∂P n

E(Snt , t)

∂Snt

+
(nσSnt )2

2

∂2P n
E(Snt , t)

∂(Snt )2
− rP n

E(Snt , t) = 0

(4.44)

with the boundary conditions

lim
Snt →∞

P n
E(Snt , t) = 0 on [0, T ) (4.45)

P n
E(SnT , T ) = (K − SnT )+ on [0,∞) (4.46)

lim
Snt →0

P n
E(Snt , t) = Ke−r(T−t) on [0, T ) (4.47)

where P n
E(Snt , t) denote the price of the European power put option.

Let P̃ n
E(ω, t) be the Mellin transform of the European power put option which

is defined by the relation (see section 3.1)

M(P n
E(Snt , t), ω) = P̃ n

E(Snt , t) =

∫ ∞
0

P n
E(Snt , t)(S

n
t )ω−1dSnt (4.48)

where ω is a complex variable with 0 < <(ω) <∞. Conversely the inversion

formula for the Mellin transform in (4.48) is defined as

P n
E(Snt , t) =M(P̃ n

E(ω, t)) = (2πi)−1

∫ c+i∞

c−i∞
P̃ n
E(ω, t)(Snt )−ωdω (4.49)
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Taking the Mellin transform of (4.44) to obtain

M
(
∂P n

E(Snt , t)

∂t
+ n

(
r +

(n− 1)σ2

2

)
Snt
∂P n

E(Snt , t)

∂Snt
, ω

)

+M
(

(nσSnt )2

2

∂2P n
E(Snt , t)

∂(Snt )2
− rP n

E(Snt , t), ω

)
=M(0, ω) (4.50)

where

M
(
∂P n

E(Snt , t)

∂t
, ω

)
=

∫ ∞
0

∂P n
E(Snt , t)

∂t
(Snt )ω−1dSnt =

∂P̃ n
E(ω, t)

∂t
(4.51)

M
(
n

(
r +

(n− 1)σ2

2

)
Snt
∂P n

E(Snt , t)

∂Snt
, ω

)
=

∫ ∞
0

(
n

(
r +

(n− 1)σ2

2

)
Snt
∂P n

E(Snt , t)

∂Snt

)
(Snt )ω−1dSnt

= −nω
(
r +

(n− 1)σ2

2

)
P̃ n
E(ω, t) (4.52)

M
(

(nσSnt )2

2

∂2P n
E(Snt , t)

∂(Snt )2
, ω

)
=

∫ ∞
0

(
(nσSnt )2

2

∂2P n
E(Snt , t)

∂(Snt )2

)
(Snt )ω−1dSnt

=
(nσ)2

2
(ω2 + ω)P̃ n

E(ω, t)

(4.53)

M(rP n
E(Snt , t), ω) =

∫ ∞
0

rP n
E(Snt , t)(S

n
t )ω−1dSnt = rP̃ n

E(ω, t) (4.54)

M(0, ω) = 0 (4.55)

Substituting (4.51), (4.52), (4.53), (4.54) and (4.55) into (4.50) yields

∂P̃ n
E(ω, t)

∂t
− nω

(
r +

(n− 1)σ2

2

)
P̃ n
E(ω, t)

+
(nσ)2

2
(ω2 + ω)P̃ n

E(ω, t)− rP̃ n
E(ω, t) = 0
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∂P̃ n
E(ω, t)

∂t
=

(
nω

(
r +

(n− 1)σ2

2

)
− (nσ)2

2
(ω2 + ω) + r

)
P̃ n
E(ω, t)

∂P̃ n
E(ω, t)

∂t
= −(nσ)2

2

(
ω2 + ω

(
1− (n− 1)

n
− 2r

nσ2

)
− 2r

n2σ2

)
P̃ n
E(ω, t)

(4.56)

Setting

α1 =

(
1− (n− 1)

n
− 2r

nσ2

)
and α2 =

2r

n2σ2

Then (4.56) becomes

∂P̃ n
E(ω, t)

∂t
= −(nσ)2

2

(
ω2 + α1ω − α2

)
P̃ n
E(ω, t) (4.57)

Solving (4.57) and integrating from 0 to t using variables separable method

yields ∫ t

0

∂P̃ n
E(ω, τ)

P̃ n
E(ω, τ)

= −
∫ t

0

(nσ)2

2

(
ω2 + α1ω − α2

)
∂τ

ln

(
P̃ n
E(ω, t)

P̃ n
E(ω, 0)

)
= exp

(
−(nσ)2

2

(
ω2 + α1ω − α2

)
t

)

P̃ n
E(ω, t) = P̃ n

E(ω, 0) exp

(
−(nσ)2

2

(
ω2 + α1ω − α2

)
t

)
Let P̃ n

E(ω, 0) = c(ω), where c(ω) is a constant that depends on the terminal

condition given by (4.46) which is of the form

P n
E(SnT , T ) = (K − SnT )+ on [0,∞)

Therefore,

P̃ n
E(ω, t) = c(ω) exp

(
−(nσ)2

2

(
ω2 + α1ω − α2

)
t

)
(4.58)
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The constant c(ω) can be expressed as follows;

c(ω) = φ̃(ω, t) exp

(
(nσ)2

2

(
ω2 + α1ω − α2

)
T

)
(4.59)

where

φ̃(ω, t) =M(P n
E(SnT , T ), ω) =

∫ ∞
0

(K−SnT )+(SnT )ω−1dSnT =
K1+ω

ω(ω + 1)
(4.60)

Equation (4.60) is independent of n. Substituting (4.60) into (4.59) gives

c(ω) =
K1+ω

ω(ω + 1)
exp

(
(nσ)2

2

(
ω2 + α1ω − α2

)
T

)
(4.61)

Using (4.58) and (4.61), therefore

P̃ n
E(ω, t) =

K1+ω

ω(ω + 1)
exp

(
(nσ)2

2

(
ω2 + α1ω − α2

)
(T − t)

)
(4.62)

Using the inversion formula of the Mellin transform defined by (4.49), then

(4.62) becomes

P n
E(Snt , t) =M−1(P̃ n

E(ω, t))

= (2πi)−1

∫ c+i∞

c−i∞

K1+ω

ω(ω + 1)

e
1
2
n2σ2(ω2+α1ω−α2)(T−t)

(Snt )ω
dω

(4.63)

Equation (4.63) is the integral representation for the price of the Euro-

pean power put option with non-dividend yield, where (Snt , t) ∈ {(0,∞) ×

[0, T )}, c ∈ (0,∞) a constant and {ω ∈ C|0 < <(ω) < ∞}. This completes

the proof.

4.2.1 The Black-Scholes-Like Formula for the Valua-
tion of the European Power Put Option with
Non-Dividend Yield

The Black-Scholes-like formula for the valuation of the European power

put option which pays no dividend yield using the convolution property of
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the Mellin transform was presented in the following result.

Theorem 4.2.2

Let Snt be the price of the underlying asset, K the strike price, r the risk-free

interest rate and T the time to expiry. Using the convolution property of the

Mellin transform, the price of European power put option on a non-dividend

yield is given by

P n
E(Snt , t) =

∫ ∞
0

φ(v)ξ0

(
Snt
v

)
1

v
dv. (4.64)

then the Black-Scholes-like formula for the valuation of the European power

put option on non-dividend paying stock is obtained as

P n
E(Snt , t) = Ke−r(T−t)N (−d2,n)−Snt e(r(n−1)+ 1

2
n(n−1)σ2)(T−t))N (−d1,n) (4.65)

where

N (−d1,n) = 1−N (d1,n),N (−d2,n) = 1−N (d2,n),

d1,n =
ln
(
Snt
K

)
+ n

(
r +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√

(T − t)
,

and

d2,n = d1,n − nσ
√

(T − t) =
ln
(
Snt
K

)
+ n

(
r − 1

2
σ2
)

(T − t)

nσ
√

(T − t)
Proof: Using the convolution property of the Mellin transform (see sub-

section 3.1.2) and follow the procedures of Panini and Srivastav (2004) and

Frontczak and Schöbel (2008). The price of the European power put option

which pays no dividend yield using the convolution property of the Mellin

transform is given by (4.64) as

P n
E(Snt , t) =

∫ ∞
0

φ(v)ξ0

(
Snt
v

)
1

v
dv
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where the values of φ(v) and ξ0

(
Snt
v

)
are to be determined. Let

ξ0(Snt ) = (2πi)−1

∫ c+i∞

c−i∞

e
1
2
n2σ2(ω2+α1ω−α2)(T−t)

(Snt )ω
dω (4.66)

Setting

1

2
n2σ2(ω2 + α1ω − α2)(T − t) = ρ1((ω + ρ2)2 − (ρ2)2 − α2)

where ρ1 = 1
2
n2σ2 and ρ2 = α1

2
, then (4.66) becomes

ξ0(Snt ) = (2πi)−1e−ρ1((ρ2)2+α2)

∫ c+i∞

c−i∞
eρ1(ω+ρ2)2(Snt )−ωdω (4.67)

Setting G = ρ1((ρ2)2 + α2) and using the transform given by Erdéyi et al.

(1954).

eφω
2

=
1

2
√
π

∫ ∞
0

1√
φ

exp

(
−(lnSnt )2

4φ

)
(Snt )ω−1dSnt , <(φ) ≥ 0 (4.68)

Equation (4.67) leads to

ξ0(Snt ) =
e−G(Snt )ρ2

nσ
√

2π(T − t)
exp

(
−1

2

(
lnSnt

nσ
√
T − t

)2
)

(4.69)

Similarly,

ξ0

(
Snt
v

)
=

e−G
(
Snt
v

)ρ2
nσ
√

2π(T − t)
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 (4.70)

Using the terminal condition given by (4.46), then

φ(v) = (K − v)+ = max(K − v, 0) (4.71)
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Substituting (4.70) and (4.71) into (4.64) yields

P n
E(Snt , t) =

∫ ∞
0

(K − v)+
e−G

(
Snt
v

)ρ2
nσ
√

2π(T − t)
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 1

v
dv

=
e−G

nσ
√

2π(T − t)

∫ K

0

(K − v)

(
Snt
v

)ρ2
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 1

v
dv

=
e−G

nσ
√

2π(T − t)

∫ K

0

K

(
Snt
v

)ρ2
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 1

v
dv

− e−G

nσ
√

2π(T − t)

∫ K

0

v

(
Snt
v

)ρ2
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 1

v
dv

=
K(Snt )ρ2e−G

nσ
√

2π(T − t)

∫ K

0

1

vρ2+1
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 dv

− (Snt )ρ2e−G

nσ
√

2π(T − t)

∫ K

0

1

vρ2
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 dv

(4.72)

Setting 

Ω = e−G

nσ
√

2π(T−t)

Ω1 =
∫ K

0
1

vρ2+1 exp

(
−1
2

(
ln
(
Snt
v

)
nσ
√
T−t

)2
)
dv

Ω2 =
∫ K

0
1
vρ2

exp

(
−1
2

(
ln
(
Snt
v

)
nσ
√
T−t

)2
)
dv

(4.73)

Equation (4.72) becomes

P n
E(Snt , t) = Ω(K(Snt )ρ2Ω1 − (Snt )ρ2Ω2) (4.74)
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Using the transformations

λ1 =
ln
(
Snt
v

)
− ρ2n

2σ2(T − 1)

nσ
√

(T − t)

and

λ2 =
ln
(
Snt
v

)
− (ρ2 − 1)n2σ2(T − 1)

nσ
√

(T − t)
to evaluate Ω1 and Ω2, respectively. Thus

Ω1 =
nσ
√

2π(T − t)
e−G

e−r(T−t)

(Snt )ρ2
1√
2π

∫ ∞
d2,n

e
−(λ1)

2

2 dλ1

=
1

Ω(Snt )ρ2
e−r(T−t)N (−d2,n)

(4.75)

and

Ω2 =
nσ
√

2π(T − t)
e−G

e(r(n−1)−nq+ 1
2
n(n−1)σ2)(T−t)

(Snt )ρ2
1√
2π

∫ ∞
d1,n

e
−(λ2)

2

2 dλ2

=
1

Ω(Snt )ρ2−1
e(r(n−1)−nq+ 1

2
n(n−1)σ2)(T−t)N (−d1,n)

(4.76)

Substituting (4.75) and (4.76) into (4.74) yields

P n
E(Snt , t) = Ke−r(T−t)N (−d2,n)− Snt e(r(n−1)+ 1

2
n(n−1)σ2)(T−t))N (−d1,n)

with

d1,n =
ln
(
Snt
K

)
+ n

(
r +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√

(T − t)
and

d2,n = d1,n − nσ
√

(T − t) =
ln
(
Snt
K

)
+ n

(
r − 1

2
σ2
)

(T − t)

nσ
√

(T − t)
Hence (4.65) is established.
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Remark 4.2.1

(i) Setting V n
p (Snt , t) = P n

E(Snt , t), the above result showed that the expres-

sion (4.63) reduced to the Black-Scholes-like valuation formula (4.39)

for the price of the European power put option with non-dividend yield.

(ii) For n = 1, (4.65) becomes Black-Scholes model for the price of the

plain European put option with non-dividend yield given by

PE(St, t) = Ke−r(T−t)N (−d2)− StN (−d1)

with

d1 =
ln
(
St
K

)
+
(
r + σ2

2

)
(T − t)

σ
√

(T − t)
and d2 = d1 − σ

√
(T − t)

where N (.) is the normal distribution function.

4.3 The Mellin Transform Method for the Val-

uation of European Power Put Option

with Dividend Yield

The integral representation for the price of the European power put option

with dividend yield was given by the following result.

Theorem 4.3.1

Let Snt be the price of the underlying asset, K be the strike price, r be the

risk-free interest rate, q be the dividend yield and T be the time to expiry.
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Assume Snt yields dividend, then the integral representation for the price of

the European power put option En
p (Snt , t) is given by

En
p (Snt , t) =M−1(Ẽn

p (ω, t))

= (2πi)−1

∫ c+i∞

c−i∞

K1+ω

ω(ω + 1)

e
1
2
n2σ2(ω2+α∗1ω−α2)(T−t)

(Snt )ω
dω

Proof: Consider the Black-Scholes-Merton-like partial differential equation

for the price of the European power put option with dividend yield given by

∂En
p (Snt , t)

∂t
+ n

(
r − q +

(n− 1)σ2

2

)
Snt
∂En

p (Snt , t)

∂Snt

+
(nσSnt )2

2

∂2En
p (Snt , t)

∂(Snt )2
− rEn

p (Snt , t) = 0

(4.77)

with the boundary conditions (4.45), (4.46) and (4.47). Taking the Mellin

transform of (4.77) to obtain

M
((

∂En
p (Snt , t)

∂t
+ n

(
1

2
σ2(n− 1) + (r − q)

)
Snt
∂En

p (Snt , t)

∂Snt

)
, ω

)

+M
((

1

2
(σnSnt )2

∂2En
p (Snt , t)

∂(Snt )2
− rEn

p (Snt , t)

)
, ω

)
= 0 (4.78)

Using (3.25), linearity, independence of time derivative and following the

procedures for the case of non-dividend yield, (4.78) becomes

∂Ẽn
p (ω, t)

∂t
−
(

1

2
σ2n(n− 1) + n(r − q)

)
ωẼn

p (ω, t)

+
1

2
n2σ2(ω2 + ω)Ẽn

p (ω, t)− rẼn
p (ω, t) = 0

Rearranging terms, yields

∂Ẽn
p (ω, t)

∂t
= −1

2
n2σ2

(
ω2 + ω

(
1− 2(r − q)

nσ2
− (n− 1)

n

)
− 2r

n2σ2

)
Ẽn
p (ω, t)

(4.79)
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Setting

α∗1 = 1− 2(r − q)
nσ2

− (n− 1)

n
and α2 =

2r

n2σ2
,

then (4.79) becomes

∂Ẽn
p (ω, t)

∂t
= −1

2
n2σ2(ω2 + α∗1ω − α2)Ẽn

p (ω, t) (4.80)

Separating the variables in (4.80) and integrating from 0 to t. The general

solution of (4.80) is obtained as

Ẽn
p (ω, t) = Ẽn

p (ω, 0)e−
1
2
n2σ2(ω2+α∗1ω−α2)t (4.81)

where Ẽn
p (ω, 0) = m(ω), a constant that depends on the final time condition

given by (4.46).

Therefore,

Ẽn
p (ω, t) = m(ω)e−

1
2
n2σ2(ω2+α∗1ω−α2)t (4.82)

But

m(ω) =M(En
p (SnT , T ), ω)e

1
2
n2σ2(ω2+α∗1ω−α2)T

Substituting (4.60) into the last expression leads to a relation

m(ω) =
K1+ω

ω(ω + 1)
e

1
2
n2σ2(ω2+α∗1ω−α2)T (4.83)

Substituting (4.83) into (4.82) yields

Ẽn
p (ω, t) =

K1+ω

ω(ω + 1)
e

1
2
n2σ2(ω2+α∗1ω−α2)(T−t) (4.84)

Applying the inverse Mellin transform (4.49), then (4.84) becomes

En
p (Snt , t) =M−1(Ẽn

p (ω, t))

= (2πi)−1

∫ c+i∞

c−i∞

K1+ω

ω(ω + 1)

e
1
2
n2σ2(ω2+α∗1ω−α2)(T−t)

(Snt )ω
dω

(4.85)
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Equation (4.85) is the integral representation for the price of the European

power put option with dividend yield using the Mellin transform method,

where (Snt , t) ∈ {(0,∞) × [0, T )}, c ∈ (0,∞) a constant and {ω ∈ C|<(ω) ∈

(0,∞)}. This completes the proof.

4.3.1 Equivalence of the Black-Scholes-Merton-Like Val-
uation Formula

The following result showed that the expression (4.85) for the price of the

European power put option with dividend yield reduced to the Black-Scholes-

Merton-like valuation formula.

Theorem 4.3.2

Let Snt be the price of the underlying asset, K the strike price, r the risk-

free interest rate, q the dividend yield and T the time to expiry. Using the

convolution property of the Mellin transform, the price of European power

put options on a dividend yield is given by

En
p (Snt , t) =

∫ ∞
0

φ(v)ξ0

(
Snt
v

)
1

v
dv. (4.86)

then, the Black-Scholes-Merton-like formula for the valuation of the Euro-

pean power put option on a dividend paying stock is given by

En
p (Snt , t) = Ke−r(T−t)N (−d2,n)

− Snt e(r(n−1)−nq+ 1
2
n(n−1)σ2)(T−t))N (−d1,n)

(4.87)

where

d1,n =
ln
(
Snt
K

)
+ n

(
r − q +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√

(T − t)
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and

d2,n = d1,n − nσ
√

(T − t) =
ln
(
Snt
K

)
+ n

(
r − q − 1

2
σ2
)

(T − t)

nσ
√

(T − t)

Proof: The price of the European power put option which pays dividend

yield using the convolution property of the Mellin transform is given by

En
p (Snt , t) =

∫ ∞
0

φ(v)ξ0

(
Snt
v

)
1

v
dv.

where the values of φ(v) and ξ0

(
Snt
v

)
are to be determined. Let

ξ0(Snt ) = (2πi)−1

∫ c+i∞

c−i∞

e
1
2
n2σ2(ω2+α∗1ω−α2)(T−t)

(Snt )ω
dω (4.88)

Setting

1

2
n2σ2(ω2 + α∗1ω − α2)(T − t) = ρ1((ω + ρ∗2)2 − (ρ∗2)2 − α2)

where ρ1 = 1
2
n2σ2 and ρ∗2 =

α∗1
2

, then (4.88) becomes

ξ0(Snt ) = (2πi)−1e−ρ1((ρ∗2)2+α2)

∫ c+i∞

c−i∞
eρ1(ω+ρ∗2)2(Snt )−ωdω (4.89)

Setting G∗ = ρ1((ρ∗2)2 + α2) and using the transform given by Erdéyi et al.

(1954).

eφω
2

=
1

2
√
π

∫ ∞
0

1√
φ

exp

(
−(lnSnt )2

4φ

)
(Snt )ω−1dSnt , <(φ) ≥ 0 (4.90)

Equation (4.89) becomes

ξ0(Snt ) =
e−G

∗
(Snt )ρ

∗
2

nσ
√

2π(T − t)
exp

(
−1

2

(
lnSnt

nσ
√
T − t

)2
)

(4.91)
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Similarly,

ξ0

(
Snt
v

)
=

e−G
∗
(
Snt
v

)ρ∗2
nσ
√

2π(T − t)
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 (4.92)

Using the terminal condition given by (4.46), then

φ(v) = (K − v)+ = max(K − v, 0) (4.93)

Substituting (4.92) and (4.93) into (4.86) yields

En
p (Snt , t) =

∫ ∞
0

(K − v)+
e−G

∗
(
Snt
v

)ρ∗2
nσ
√

2π(T − t)
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 1

v
dv

En
p (Snt , t) =

e−G
∗

nσ
√

2π(T − t)

∫ K

0

(K−v)

(
Snt
v

)ρ∗2
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 1

v
dv

=
e−G

∗

nσ
√

2π(T − t)

∫ K

0

K

(
Snt
v

)ρ∗2
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 1

v
dv

− e−G
∗

nσ
√

2π(T − t)

∫ K

0

v

(
Snt
v

)ρ∗2
exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 1

v
dv

=
K(Snt )ρ

∗
2e−G

∗

nσ
√

2π(T − t)

∫ K

0

1

vρ
∗
2+1

exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 dv

− (Snt )ρ
∗
2e−G

∗

nσ
√

2π(T − t)

∫ K

0

1

vρ
∗
2

exp

−1

2

 ln
(
Snt
v

)
nσ
√
T − t

2
 dv (4.94)
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Setting 

Ω∗ = e−G
∗

nσ
√

2π(T−t)

Ω∗1 =
∫ K

0
1

vρ
∗
2+1 exp

(
−1
2

(
ln
(
Snt
v

)
nσ
√
T−t

)2
)
dv

Ω∗2 =
∫ K

0
1

vρ
∗
2

exp

(
−1
2

(
ln
(
Snt
v

)
nσ
√
T−t

)2
)
dv

(4.95)

Equation (4.94) yields

En
p (Snt , t) = Ω∗(K(Snt )ρ

∗
2Ω∗1 − (Snt )ρ

∗
2Ω∗2) (4.96)

Using the transformations

λ∗1 =
ln
(
Snt
v

)
− ρ∗2n2σ2(T − 1)

nσ
√

(T − t)

and

λ∗2 =
ln
(
Snt
v

)
− (ρ∗2 − 1)n2σ2(T − 1)

nσ
√

(T − t)
to evaluate Ω∗1 and Ω∗2, respectively. Thus

Ω∗1 =
nσ
√

2π(T − t)
e−G∗

e−r(T−t)

(Snt )ρ
∗
2

1√
2π

∫ ∞
d2,n

e
−(λ∗1)

2

2 dλ∗1

=
1

Ω∗(Snt )ρ
∗
2
e−r(T−t)N (−d2,n)

(4.97)

and

Ω∗2 =
nσ
√

2π(T − t)
e−G∗

e(r(n−1)−nq+ 1
2
n(n−1)σ2)(T−t)

(Snt )ρ
∗
2

1√
2π

∫ ∞
d1,n

e
−(λ∗2)

2

2 dλ∗2

=
1

Ω∗(Snt )ρ
∗
2−1

e(r(n−1)−nq+ 1
2
n(n−1)σ2)(T−t)N (−d1,n)

(4.98)

Substituting (4.97) and (4.98) into (4.96) leads to a relation

En
p (Snt , t) = Ke−r(T−t)N (−d2,n)− Snt e(r(n−1)−nq+ 1

2
n(n−1)σ2)(T−t))N (−d1,n)
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with

d1,n =
ln
(
Snt
K

)
+ n

(
r − q +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√

(T − t)
and

d2,n = d1,n − nσ
√

(T − t) =
ln
(
Snt
K

)
+ n

(
r − q − 1

2
σ2
)

(T − t)

nσ
√

(T − t)

Hence (4.87) is established.

Remark 4.3.1

(i) The above result showed that the expression (4.85) reduced to the

Black-Scholes-Merton-like valuation formula for the price of the Euro-

pean power put option with dividend yield.

(ii) For n = 1, (4.85) becomes the Black-Scholes-Merton model for the

price of the plain European put option on dividend paying stocks given

by

Ep(St, t) = Ke−r(T−t)N (−d2)− Ste−q(T−t)N (−d1)

with

d1 =
ln
(
St
K

)
+
(
r − q + σ2

2

)
(T − t)

σ
√

(T − t)
and d2 = d1 − σ

√
(T − t)

4.4 The Mellin Transform Method for the Val-

uation of the American Power Put Op-

tion with Non-Dividend Yield

Analytical approximations and numerical techniques have been proposed

for the valuation of plain American put option but there is no known closed-
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form solution for the price of American power put option. The integral

representation for the price of the American power put option and the in-

tegral equation to determine the free boundary of the option via the Mellin

transform method for the case of non-dividend yield was given by the follow-

ing result.

Theorem 4.4.1

Let Snt be the price of the underlying asset, K be the strike price, r be the

risk-free interest rate and T be the time to expiry. Assume Snt yields no div-

idend, then the integral representation for the price of the American power

put option P n
A(Snt , t) is given by

P n
A(Snt , t) =

1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α1ω−α2)(T−t)(Snt )−ωdω

+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(Ŝnt (y))ω

ω
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)dydω

Proof: Consider the non-homogeneous Black-Scholes partial differential equa-

tion for the price of American power put option with non-dividend yield given

by

∂P n
A(Snt , t)

∂t
+ n

(
1

2
σ2(n− 1) + r

)
Snt
∂P n

A(Snt , t)

∂Snt

+
1

2
(σnSnt )2∂

2P n
A(Snt , t)

∂(Snt )2
− rP n

A(Snt , t) = f(Snt , t) (4.99)

where the early exercise function f(Snt , t) defined on (0,∞)× (0, T ) is given

by

f(Snt , t) =

{
−rK, if 0 < Snt ≤ Ŝnt
0, if Snt > Ŝnt .

(4.100)
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The final time condition is given by

P n
A(SnT , T ) = φ(SnT ) = max(K − SnT , 0) = (K − SnT )+ on [0,∞).

The other boundary conditions are given by

lim
Snt →∞

P n
A(Snt , t) = 0 on [0, T ) (4.101)

lim
Snt →0

P n
A(Snt , t) = K on [0, T ) (4.102)

The free boundary Ŝnt is determined by the value-matching condition and

super-contact condition given by

P n
A(Ŝnt , t) = K − Ŝnt (4.103)

and

∂P n
A(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝnt

= −1 (4.104)

respectively. Equations (4.103) and (4.104) ensure that the price of the power

option is continuous across the free boundary and the slope of the price is

continuous across the free boundary respectively. The two conditions are

jointly referred to as the smooth pasting conditions. Applying the Mellin

transform to (4.99) yields

∂P̃ n
A(ω, t)

∂t
+
n2σ2

2

(
ω2 + ω

(
1− n− 1

n
− 2r

nσ2

)
− 2r

n2σ2

)
P̃ n
A(ω, t) = f̃(ω, t)

(4.105)

Setting α1 =
(
1− n−1

n
− 2r

nσ2

)
and α2 = 2r

n2σ2 . Then (4.105) becomes

∂P̃ n
A(ω, t)

∂t
+
n2σ2

2
(ω2 + ωα1 − α2)P̃ n

A(ω, t) = f̃(ω, t) (4.106)
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The Mellin transform of the early exercise function in (4.106) is obtained as

f̃(ω, t) =

∫ ∞
0

f(Snt , t)(S
n
t )ω−1dSnt

=

∫ Ŝnt

0

−rK(Snt )ω−1dSnt

=
−rK(Ŝnt )ω

ω

(4.107)

Solving further and from the theory of differential equation, the particular

solution of (4.106) is obtained as

P̃ n
A(ω, t)(p.sol) =

∫ T

t

rK(Ŝnt )ω

ω
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)dy (4.108)

Similarly, the complementary solution of the left hand side of (4.106) is ob-

tained as

P̃ n
A(ω, t)comp.sol = c(ω)e−

1
2
n2σ2(ω2+α1ω−α2)t (4.109)

where c(ω) is the integration constant given by

c(ω) = φ̃(ω, t)e
1
2
n2σ2(ω2+α1ω−α2)T (4.110)

φ̃(ω, t) is the Mellin transform of the final time condition and is given by

φ̃(ω, t) =

∫ ∞
0

(K − SnT )+(SnT )ω−1dSnT

=

∫ K

0

(K − SnT )(SnT )ω−1dSnT

=
Kω+1

ω(ω + 1)

(4.111)

Using (4.110) and (4.111) in (4.109) yields

P̃ n
A(ω, t)comp.sol =

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α1ω−α2)(T−t) (4.112)
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Hence the general solution of (4.106) is given by

P̃ n
A(ω, t) = P̃ n

A(ω, t)comp.sol + P̃ n
A(ω, t)(p.sol)

=
Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α1ω−α2)(T−t)

+

∫ T

t

rK(Ŝny )ω

ω
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)dy

(4.113)

The Mellin inversion of (4.113) is obtained as

P n
A(Snt , t) =

1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α1ω−α2)(T−t)(Snt )−ωdω

+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(Ŝny )ω

ω
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)dydω (4.114)

where

(Snt , t) ∈ {(0,∞) × [0, T )}, c ∈ (0,∞) and {ω ∈ C|0 < <(ω) < ∞}. This

completes the proof.

Remark 4.4.1

(i) Equations (4.103) and (4.104) jointly ensure that the premature exer-

cise of the American power put option on the endogenously determined

early exercise boundary, Ŝnt , will be optimal and self-financing.

(ii) Equation (4.114) expresses the value of an American power put option

as the sum of the value of a European power put option and the early

exercise premium.

(iii) The first term in (4.114) is the integral representation for the price of

the European power put option which pays no dividend yield2. The

2This stems from the minimum guaranteed payoff of the American power put option
with non-dividend yield.
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second term in (4.114) is called the early exercise premium for the

American power put option with non-dividend yield3. Therefore (4.114)

becomes

P n
A(Snt , t) = P n

E(Snt , t) + enp (Snt , t) (4.115)

where

P n
E(Snt , t) =

1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α1ω−α2)(T−t)(Snt )−ωdω

enp (Snt , t) =
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(Ŝny )ω

ω
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)dydω

(iv) Setting Snt = Ŝnt in (4.115) and using the value-matching condition

given by (4.103), the integral representation for the free boundary of

the American power put option with non-dividend yield is obtained as

Ŝnt = K − P n
E(Ŝnt , t)

−rK
2πi

∫ c+i∞

c−i∞
(Ŝnt )−ω

∫ T

t

(Ŝny )ω

ω
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)dydω (4.116)

where

P n
E(Ŝnt , t) =

1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α1ω−α2)(T−t)(Ŝnt )−ωdω

(v) The American power put option P n
A(Snt , t) which pays no dividend yield

satisfies the decomposition

P n
A(Snt , t) = P n

E(Snt , t)

3This is the value attributable to the right of exercising the option early.
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+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(Ŝny )ω

ω
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)dydω

where α1 =
(
1− n−1

n
− 2r

nσ2

)
and α2 = 2r

n2σ2 , (Snt , t) ∈ {(0,∞) ×

[0, T )}, c ∈ (0,∞) and {ω ∈ C|0 < <(ω) <∞}.

4.5 The Mellin Transform Method for the Val-

uation of the American Power Put Op-

tion with Dividend Yield

The integral representation for the price of the American power put option

which pays dividend yield using the Mellin transform method was given by

the following result.

Theorem 4.5.1

Let Snt be the price of the underlying asset, K be the strike price, r be the

risk-free interest rate, q be the dividend yield and T be the time to maturity.

Assume Snt yields dividend, then the integral representation for the price of

the American power put option Anp (Snt , t) is given by

Anp (Snt , t) =
1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α∗1ω−α2)(T−t)(Snt )−ωdω

+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄nt (y))ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

− q

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄nt (y))ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω (4.117)

Proof: Consider the non-homogeneous Black-Scholes-Merton-like partial dif-

ferential equation for the price of American power put option with dividend
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yield given by

∂Anp (Snt , t)

∂t
+ n

(
1

2
σ2(n− 1) + (r − q)

)
Snt
∂Anp (Snt , t)

∂Snt

+
1

2
(σnSnt )2

∂2Anp (Snt , t)

∂(Snt )2
− rAnp (Snt , t) = f ∗(Snt , t) (4.118)

where

f ∗(Snt , t) =

{
−rK + qSnt , if 0 < Snt ≤ S̄nt
0, if Snt > S̄nt

(4.119)

on (0,∞)×[0, T ) and S̄nt the free boundary of the American power put option

with dividend yield. The final time condition is given by

Anp (SnT , T ) = φ(SnT ) = max(K − SnT , 0) = (K − SnT )+ on [0,∞).

The other conditions are given by

lim
Snt →∞

Anp (Snt , t) = 0 on [0, T )

lim
Snt →0

Anp (Snt , t) = K on [0, T )

with the value-matching condition and super-contact condition given by

Anp (S̄nt , t) = K − S̄nt (4.120)

and
∂Anp (Snt , t)

∂S̄nt

∣∣∣∣∣
Snt =S̄nt

= −1, (4.121)

The Mellin transform of (4.118) gives

∂Ãnp (ω, t)

∂t
+
n2σ2

2

(
ω2 + ω

(
1− n− 1

n
− 2(r − q)

nσ2

)
− 2r

n2σ2

)
Ãnp (ω, t)

= f̃ ∗(ω, t)

(4.122)
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Putting α∗1 =
(

1− n−1
n
− 2(r−q)

nσ2

)
and α2 = 2r

n2σ2 , (4.122) yields

∂Ãnp (ω, t)

∂t
+
n2σ2

2
(ω2 + ωα∗1 − α2)Ãnp (ω, t) = f̃ ∗(ω, t) (4.123)

where

f̃ ∗(ω, t) =

∫ ∞
0

f ∗(Snt , t)(S
n
t )ω−1dSnt

=

∫ S̄nt

0

(−rK + q)(Snt )ω−1dSnt

=
−rK(S̄nt )ω

ω
+
q(S̄nt )ω+1

ω + 1

(4.124)

Following the same procedures for the case of non-dividend yield, the general

solution of (4.123) is obtained as

Ãnp (ω, t) =
Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α∗1ω−α2)(T−t)

+

∫ T

t

rK(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dy

−
∫ T

t

q(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dy

(4.125)

The Mellin inversion of (4.125) leads to

Anp (Snt , t) =
1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α∗1ω−α2)(T−t)(Snt )−ωdω

+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

− q

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

(4.126)

Equation (4.126) is the integral representation for the price of American

power put option with dividend yield, where (Snt , t) ∈ {(0,∞)× [0, T )}, c ∈
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(0,∞) and {ω ∈ C|0 < <(ω) <∞}.

Remark 4.5.1

(i) Equations (4.120) and (4.121) jointly ensure that the premature exer-

cise of the American power put option on the endogenously determined

early exercise boundary, S̄nt , will be optimal and self-financing.

(ii) Equation (4.126) expresses the value of an American power put option

as the sum of the value of a European power put option and the early

exercise premium. The early exercise premium can be viewed as the

value of a contingent claim that allows interest earned on the strike

price to be exchanged for dividends paid by the asset whenever the

asset price is above the optimal exercise boundary (free boundary).

(iii) The first term in (4.126) is the integral representation for the price

of the European power put option with dividend yield4. The last two

terms denote the early exercise premium for the American power put

option with dividend yield5. Therefore (4.126) becomes

Anp (Snt , t) = En
p (Snt , t) + enp (Snt , t) (4.127)

where

En
p (Snt , t) =

1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α∗1ω−α2)(T−t)(Snt )−ωdω

4This stems from the minimum guaranteed payoff of the American power put option
with dividend yield.

5This is the value attributable to the right of exercising the option early.
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enp (Snt , t) =
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

− q

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

(iv) Setting Snt = S̄nt in (4.127) and using the value-matching condition

given by (4.120), the integral representation for the free boundary of

the American power put option with dividend yield is obtained as

S̄nt = K − En
p (S̄nt , t)

− rK

2πi

∫ c+i∞

c−i∞
(S̄nt )−ω

∫ T

t

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

+
q

2πi

∫ c+i∞

c−i∞
(S̄nt )−ω

∫ T

t

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

(4.128)

where

En
p (S̄nt , t) =

1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α∗1ω−α2)(T−t)(S̄nt )−ωdω

(v) The American power put option Anp (Snt , t) which pays dividend yield

satisfies the decomposition

Anp (Snt , t) = En
p (Snt , t)

+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

− q

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

where α∗1 =
(

1− n−1
n
− 2(r−q)

nσ2

)
and α2 = 2r

n2σ2 , (Snt , t) ∈ {(0,∞) ×

[0, T )}, c ∈ (0,∞) and {ω ∈ C|0 < <(ω) <∞}.

95



UNIV
ERSIT

Y O
F 

IB
ADAN LI

BRARY

In the following results, some special cases of integral representation for price

of American power put option with non-dividend yield (4.114) and integral

representation for price of American power put option with dividend yield

(4.126) was considered.

Theorem 4.5.2

If τ → T − t and n = 1, then

(i) the integral representation for the price of American power put option

which pays no dividend yield (4.114) reduces to the integral equation

derived by Kim (1990) for the price of the plain American put option

given by

PA(Sτ , τ) = PE(Sτ , τ) +

∫ τ

0

rKe−rηN (−dη)dη (4.129)

where

dη =
ln
(

Sτ
Ŝ(τ−η)

)
+
(
r − σ2

2

)
η

σ
√
η

(4.130)

(ii) the free boundary for the American power put option which pays no

dividend yield (4.116) reduces to the integral equation derived by Kim

(1990) for the price of the plain American put option given by

Ŝτ = K − PE(Ŝτ , τ)−
∫ τ

0

rKe−rηN (−d̂η)dη (4.131)

where

d̂η =
ln
(

Ŝτ
Ŝ(τ−η)

)
+
(
r − σ2

2

)
η

σ
√
η

(4.132)
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Proof: Setting n = 1 and τ = T − t in (4.114) yields

PA(Sτ , τ) =
1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
σ2(ω2+α1ω−α2)(Sτ )

−ωdω

+
rK

2πi

∫ c+i∞

c−i∞
(Sτ )

−ω
∫ τ

0

(Ŝy)
ω

ω
e

1
2
σ2(ω2+α1ω−α2)(τ−y)dydω (4.133)

where α1 =
(
1− 2r

σ2

)
and α2 = 2r

σ2 . Equation (4.133) can be written as

PA(Sτ , τ) = PE(Sτ , τ) + ep(Sτ , τ) (4.134)

where PE(Sτ , τ) and ep(Sτ , τ) denote the price of the European put option

with no dividend yield and early exercise premium for the American put

option with no dividend yield respectively. Let

ep(Sτ , τ) =

∫ τ

0

Ω(Sτ , Ŝy, τ, y)dy (4.135)

where

Ω(Sτ , Ŝy, τ, y) =
1

2πi

∫ c+i∞

c−i∞
f̃(ω, y)ξ̃(ω, y)S−ωτ dωdy (4.136)

The early exercise function is given by

f(Sτ , y) =

{
−rK, if Sτ ∈ (0, Ŝy]

0, if Sτ > Ŝy
(4.137)

and

ξ̃(ω, y) = e
1
2
σ2(ω2+α1ω−α2)(τ−y) (4.138)

Using the convolution property of the Mellin transform, (4.136) becomes

Ω(Sτ , Ŝy, τ, y) =

∫ ∞
0

f(v, y)ξ

(
Sτ
v
, y

)
1

v
dv (4.139)

97



UNIV
ERSIT

Y O
F 

IB
ADAN LI

BRARY

Using (4.137) and substituting

ξ(Sτ , y) = e−
σ2

2
(τ−y)(α2+1

2 )
2 S

1−α2
2

τ

σ
√

2π(τ − y)
e
− 1

2

(
lnSτ
σ
√
τ−y

)2
(4.140)

into (4.139) yields

Ω(Sτ , Ŝy, τ, y) = rK

∫ Ŝy

0

e−
σ2

2
(τ−y)(α2+1

2 )
2

v(1+
1−α2

2 )

S
1−α2

2
τ

σ
√

2π(τ − y)
e
− 1

2

(
ln(Sτ v

−1)

σ
√
τ−y

)2

dv

(4.141)

Using the transformation given by

λ =
1

σ
√
τ − y

(
ln

(
Sτ
v

)
− σ2(τ − y)

1− α2

2

)
(4.142)

Equation (4.141) becomes

Ω(Sτ , Ŝy, τ, y) = rKe−r(τ−y) 1√
2π

∫ ∞
dy

e−
λ2

2 dλ

= rKe−r(τ−y)N (−dy)
(4.143)

Substituting (4.143) into (4.135) to obtain the early exercise premium for the

American put option with non-dividend yield as

ep(Sτ , τ) = rK

∫ τ

0

e−r(τ−y)N (−dy)dy (4.144)

where

dy =
ln
(
Sτ
Ŝy

)
+
(
r − σ2

2

)
(τ − y)

σ
√
τ − y

(4.145)

Setting η = τ − y, then (4.144) becomes

ep(Sτ , τ) =

∫ τ

0

rKe−rηN (−dη)dη (4.146)

where

dη =
ln
(

Sτ
Ŝ(τ−η)

)
+
(
r − σ2

2

)
η

σ
√
η
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Substituting (4.146) into (4.134) yields the integral equation (4.129) obtained

by Kim (1990) as

PA(Sτ , τ) = PE(Sτ , τ) +

∫ τ

0

rKe−rηN (−dη)dη

Hence (i) is established.

For the second reduction, setting Sτ = Ŝτ in the last integral equation above

and using the value-matching condition given by

PA(Ŝτ , τ) = K − Ŝτ ,

the free boundary Ŝτ of the American put option which pays no dividend

yield (4.131) derived by Kim (1990) is obtained as

Ŝτ = K − PA(Ŝτ , τ)−
∫ τ

0

rKe−rηN (−d̂η)dη

where

d̂η =
ln
(

Ŝτ
Ŝ(τ−η)

)
+
(
r − σ2

2

)
η

σ
√
η

The following result showed that the free boundary/optimal exercise bound-

ary satisfied the ex-expiration date.

Theorem 4.5.3

If τ = T − t, then the optimal exercise boundary S̄τ of the American power

put option with dividend yield for n = 1 satisfies

lim
τ→0

S̄τ = K min

(
1,
r

q

)
(4.147)

Proof: Let τ = T − t and n = 1, (4.128) becomes

S̄τ = K − Ep(S̄τ , τ)
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−rK
2πi

∫ c+i∞

c−i∞
(S̄τ )

−ω
∫ τ

0

(S̄y)
ω

ω
e

1
2
σ2(ω2+α∗1ω−α2)(τ−y)dydω

+
q

2πi

∫ c+i∞

c−i∞
(S̄τ )

−ω
∫ τ

0

(S̄y)
ω+1

ω + 1
e

1
2
σ2(ω2+α∗1ω−α2)(τ−y)dydω (4.148)

where α∗1 =
(

1− 2(r−q)
σ2

)
and α2 = 2r

σ2 . Factorizing and rearranging, (4.148)

becomes

S̄τ = K

(
1 + e−rτ (N (d2(S̄τ , K, τ))− 1)− rIτ
1 + e−qτ (N (d1(S̄τ , K, τ))− 1)− qJτ

)
(4.149)

where

d1(S̄τ , K, τ) =
ln
(
S̄τ
K

)
+
(
r − q + 1

2
σ2
)
τ

σ
√
τ

(4.150)

d2(S̄τ , K, τ) =
ln
(
S̄τ
K

)
+
(
r − q − 1

2
σ2
)
τ

σ
√
τ

(4.151)

Aτ =
1

2πi

∫ c+i∞

c−i∞
(S̄τ )

−ω
∫ τ

0

(S̄y)
ω

ω
e

1
2
σ2(ω2+α∗1ω−α2)(τ−y)dydω (4.152)

and

Bτ =
1

2πi

∫ c+i∞

c−i∞
(S̄τ )

−ω
∫ τ

0

(S̄y)
ω+1

ω + 1
e

1
2
σ2(ω2+α∗1ω−α2)(τ−y)dydω (4.153)

Notice first that critical stock price is bounded from above, that is S̄τ ≤

K, ∀ τ > 0. Taking the limits of (4.150) and (4.151) as τ → 0 yields

lim
τ→0

d1(S̄τ , K, τ) =

{
0, for S̄(0) = K

−∞, for S̄(0) < K
(4.154)

and

lim
τ→0

d2(S̄τ , K, τ) =

{
0, for S̄(0) = K

−∞, for S̄(0) < K
(4.155)

respectively. If

lim
τ→0

S̄τ = K (4.156)
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Therefore,

lim
τ→0
N (d1(S̄τ , K, τ)) = lim

τ→0
N (d2(S̄τ , K, τ)) =

1

2
(4.157)

Using (4.157), the limit of (4.149) is obtained as

lim
τ→0

S̄τ = K lim
τ→0

(
1 + e−rτ (N (d2(S̄τ , K, τ))− 1)− rAτ
1 + e−qτ (N (d1(S̄τ , K, τ))− 1)− qBτ

)

lim
τ→0

S̄τ = K

( 1
2
− limτ→0(rAτ )

1
2
− limτ→0(qBτ )

)
(4.158)

Since

lim
τ→0

Aτ = 0

and

lim
τ→0

Bτ = 0

Equation (4.158) becomes

lim
τ→0

S̄τ
K

= 1 (4.159)

If

lim
τ→0

S̄τ < K

then

lim
τ→0

S̄τ
K

=

(
r

q

)
lim
τ→0

(
Aτ
Bτ

)
(4.160)

The first integral Aτ can also be written as

Aτ =

∫ τ

0

1

2πi

∫ c+i∞

c−i∞
(S̄τ )

−ω (S̄y)
ω

ω
e

1
2
σ2(ω2+α∗1ω−α2)(τ−y)dωdy (4.161)

Applying the residue theorem of complex number given by

1

2πi

∫
δω

f(ω)dω =
k∑
j=0

Res(f, ωj), ω ∈ C (4.162)
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Then the inner integral in (4.161) becomes

1

2πi

∫ c+i∞

c−i∞
(S̄τ )

−ω (S̄y)
ω

ω
e

1
2
σ2(ω2+α∗1ω−α2)(τ−y)dydω = e−r(τ−y) (4.163)

Substituting (4.163) into (4.161) and solving further yields

Aτ =
(1− e−rτ )

r
(4.164)

Similarly,

Bτ =
(1− e−qτ )

q
(4.165)

Substituting (4.164) and (4.165) into (4.160) yields

lim
τ→0

S̄τ
K

=

(
r

q

)
lim
τ→0

(
1−e−rτ

r
1−e−qτ

q

)
= lim

τ→0

(
1− e−rτ

1− e−qτ

)
= 1 (4.166)

For q ≤ r, (4.159) is obtained. Using the L’Hospital rule, for q > r, (4.166)

becomes

lim
τ→0

S̄τ
K

=
r

q
(4.167)

Combining (4.159) and (4.167), then

lim
τ→0

S̄τ = K min

(
1,
r

q

)
Hence (4.147) is established.

Remark 4.5.2

(i) The above result confirms the formula of Kim and Yu (1996).

(ii) The ex-expiration date early exercise boundary for the American put

option is given by (4.147).
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The following result showed the behaviour of the optimal exercise boundary

S̄τ of the American power put option with n = 1 near time to expiry.

Theorem 4.5.4

If the underlying asset price follows a lognormal diffusion process and the risk-

free interest rate is a positive constant, then the optimal exercise boundary

of the American power put option with n = 1 at maturity is given by

lim
τ→0

S̄τ =

{
rK
q
, for q > r

K, for q ≤ r
(4.168)

Proof: Let τ = T − t, consider (4.149) which is of the form

S̄τ = K

(
1 + e−rτ (N (d2(S̄τ , K, τ))− 1)− rAτ
1 + e−qτ (N (d1(S̄τ , K, τ))− 1)− qBτ

)
If q > r, the limit of the right hand side of (4.149) as τ → 0 can be evaluated

using the L’Hospital’s rule to get

lim
τ→0

S̄τ =
rK

q
(4.169)

If q ≤ r, the limit of the right hand side of (4.149) as τ → 0 is obtained

directly as

lim
τ→0

S̄τ = K (4.170)

Using (4.169) and (4.170), the optimal exercise boundary of the American

power put option with n = 1 at time to expiry is obtained as

lim
τ→0

S̄τ =

{
rK
q
, for q > r

K, for q ≤ r

Hence (4.168) is established.
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Remark 4.5.3

(i) From (4.169), it is observed that large dividend payouts reduce the

incentives of early exercise.

(ii) From (4.170), it is observed that it is not possible for the underlying

asset price at expiration to fall below K without crossing the exercise

boundary at an earlier time.

The following result showed that the integral representation given by (4.126)

reduced to the integral equation derived by Kim (1990) for the valuation of

plain American put option.

Theorem 4.5.5

The integral representation for the price of the American power put option

which pays dividend yield given by

Anp (Snt , t) =
1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α∗1ω−α2)(T−t)(Snt )−ωdω

+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

− q

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

can be reduced to integral representation derived by Kim (1990).

Ap(Sτ , τ) = Ep(Sτ , τ) +

∫ τ

0

rKe−r(τ−η)N(−d2(Sτ , S̄η, τ − η))dη

−
∫ τ

0

qSτe
−q(τ−η)N(−d1(Sτ , S̄η, τ − η))dη (4.171)
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where

d1(Sτ , S̄η, τ − η) =
ln
(

Sτ
S̄(τ−η)

)
+
(
r − q + σ2

2

)
(τ − η)

σ
√
τ − η

d2(Sτ , S̄η, τ − η) =
ln
(

Sτ
S̄(τ−η)

)
+
(
r − q − σ2

2

)
(τ − η)

σ
√
τ − η

τ = T − t

S̄τ ≤ Sτ

Proof: Setting τ = T − t, then (4.126) becomes

Anp (Snτ , τ) = En
p (Snτ , τ)

+
rK

2πi

∫ c+i∞

c−i∞
(Snτ )−ω

∫ τ

0

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(τ−y)dydω

− q

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ τ

0

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(τ−y)dydω (4.172)

where α∗1 =
(

1− n−1
n
− 2(r−q)

nσ2

)
and α2 = 2r

n2σ2 , (Snτ , τ) ∈ {(0,∞)×[0, T ]}, c ∈

(0,∞) and {ω ∈ C|0 < <(ω) <∞}.

Using the procedures of Frontczak and Schöbel (2008), (4.172) can be written

as

Anp (Snτ , τ) = En
p (Snτ , τ)−

∫ τ

0

1

2πi

∫ c+i∞

c−i∞
f̃ ∗(ω, y)ξ̃(ω, y)(Snτ )−ωdωdy (4.173)

with the Mellin transform of f ∗(Snτ , y) and ξ(Snτ , y) given by

f̃ ∗(ω, y) =
−rK(S̄ny )ω

ω
+

q

ω + 1
(S̄ny )ω+1 (4.174)

ξ̃(ω, y) = e
1
2
n2σ2(ω2+α∗1ω−α2)(τ−y) (4.175)
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respectively. Using the convolution theorem of the Mellin transform, yields

Anp (Snτ , τ) = En
p (Snτ , τ)−

∫ τ

0

∫ ∞
0

f ∗(v, y)ξ

(
Snτ
v
, y

)
1

v
dvdy

The price of the American power put option which pays dividend yield can

be expressed as

Anp (Snτ , τ) = En
p (Snτ , τ)−

∫ τ

0

I(Snτ , y)dy (4.176)

The integral I(Snτ , y) is evaluated as follows

I(Snτ , y) =

∫ ∞
0

f ∗(v, y)ξ

(
Snτ
v
, y

)
1

v
dv

I(Snτ , y) = −rKe−ρ1((ρ∗2)2+α2) (Snτ )ρ
∗
2

σ
√

2π(τ − y)

∫ S̄ny

0

1

vρ2+1
e
− 1

2

(
ln
Snτ
v

σ
√
τ−y

)2

dv

+qe−ρ1((ρ∗2)2+α2) (Snτ )ρ
∗
2

σ
√

2π(τ − y)

∫ S̄ny

0

1

vρ
∗
2
e
− 1

2

(
ln
Snτ
v

σ
√
τ−y

)2

dv (4.177)

where ρ1 = n2σ2

2
(τ−y), ρ∗2 =

α∗1
2

= 1
2

(
1− n−1

n
− 2(r−q)

nσ2

)
and α2 = 2r

n2σ2 . Using

the following variables transformation given by

λ1 =
1

nσ
√
τ − y

(
ln

(
Snτ
v

)
− ρ2n

2σ2(τ − y)

)
and

λ2 =
1

nσ
√
τ − y

(
ln

(
Snτ
v

)
− (ρ2 − 1)n2σ2(τ − y)

)
for the first and second integrals in (4.177) respectively, to obtain

I(Snτ , y) = −rKe−r(τ−y)N (−d2,n(Snτ , S̄
n
y , τ − y))
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+qe(r(n−1)−nq+ 1
2
n(n−1)σ2)(τ−y)N (−d1,n(Snτ , S̄

n
y , τ − y)) (4.178)

Substituting (4.178) into (4.176) yields

Anp (Snτ , τ) = En
p (Snτ , τ) +

∫ τ

0

rKe−r(τ−y)N (−d2,n(Snτ , S̄
n
y , τ − y))dy

−
∫ τ

0

qe(r(n−1)−nq+ 1
2
n(n−1)σ2)(τ−y)N (−d1,n(Snτ , S̄

n
y , τ − y))dy (4.179)

By changing the variable y to η, (4.179) becomes

Anp (Snτ , τ) = En
p (Snτ , τ) +

∫ τ

0

rKe−r(τ−η)N (−d2,n(Snτ , S̄
n
η , τ − η))dη

−
∫ τ

0

qe(r(n−1)−nq+ 1
2
n(n−1)σ2)(τ−η)N (−d1,n(Snτ , S̄

n
η , τ − η))dη (4.180)

Hence, by setting n = 1, this proves (4.171).

The following result showed that the integral representation (4.126) and de-

composition derived by Carr et al. (1992) for the price of American put

option are equivalent.

Theorem 4.5.6

If τ = T − t, Sτ ≥ S̄τ and n = 1, then the integral representation for the

price of American power put option which pays dividend yield

Anp (Snt , t) =
1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α∗1ω−α2)(T−t)(Snt )−ωdω

+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

− q

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

reduces to the decomposition derived by Carr et al. (1992) for the price of

the plain American put option given by

Ap(Sτ , τ) = (K − Sτ )+ +
σ2Sτ

2

∫ τ

0

e−q(τ−η)

σ
√
τ − η

Ń (−d1(S,K, τ − η))dη
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+

∫ τ

0

rKe−r(τ−η)[N (−d2(Sτ , S̄(η), τ − η))−N (−d2(Sτ , K, τ − η))]dη

−
∫ τ

0

qSτe
−q(τ−η)[N (−d1(Sτ , S̄(η), τ−η))−N (−d1(Sτ , K, τ−η))]dη (4.181)

where

d1(x, z, t) =
ln
(
x
z

)
+ (r − q − 1

2
σ2)t

σ
√
t

d2(x, z, t) = d1(x, z, t)− σ
√
t

 (4.182)

Proof: Setting τ = T − t, n = 1 in (4.126) leads to

Ap(Sτ , τ) = Ep(Sτ , τ)

+
rK

2πi

∫ c+i∞

c−i∞
(Sτ )

−ω
∫ τ

0

(S̄y)
ω

ω
e

1
2
σ2(ω2+α∗1ω−α2)(τ−y)dydω

− q

2πi

∫ c+i∞

c−i∞
(Sτ )

−ω
∫ τ

0

(S̄y)
ω+1

ω + 1
e

1
2
σ2(ω2+α∗1ω−α2)(τ−y)dydω

(4.183)

where α∗1 =
(

1− 2(r−q)
σ2

)
and α2 = 2r

σ2 , (Sτ , τ) ∈ {(0,∞)× [0, τ)}, c ∈ (0,∞)

and {ω ∈ C|0 < Re(ω) < ∞}. Following the procedures of Frontczak and

Schöbel (2008), the price for the European put option can be expressed as

Ep(Sτ , τ) = K.H(K − Sτ )−K.H(K − Sτ )

+Ke−rτN (−d2(Sτ , K, τ))− Se−qτN (−d1(Sτ , K, τ))
(4.184)

where H(y) is the Heaviside step function given by

H(y) =


0, for y < 0
1
2
, for y = 0

1, for y > 0
(4.185)

The reason for the factor 1
2

at the point of discontinuity will become clearly

below.

lim
τ→0

d1(Sτ , K, τ) = lim
τ→0

d2(Sτ , K, τ) =


−∞, for Sτ < K
0, for Sτ = K
∞, for Sτ > K

(4.186)
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Equation (4.184) leads to a relation

Ep(Sτ , τ) = K.H(K − Sτ )− Se−qτN (−d1(Sτ , K, τ))

+ [Ke−rηN (−d2(Sτ , K, τ))]

∣∣∣∣∣
τ

0

= K.H(K − Sτ )− Se−qτN (−d1(Sτ , K, τ))

−K
∫ τ

0

re−rηN (−d2(Sη, K, η))dη

+K

∫ τ

0

(
e−rηŃ (−d2(Sη, K, η))

∂(−d1(Sη, K, η)− σ√η)

∂η

)
dη

Thus,

Ep(Sτ , τ) = K.H(K − Sτ )− Sτe−qτN (−d1(Sτ , K, τ))

−K
∫ τ

0

re−rηN (−d2(Sη, K, η))dη

+K

∫ τ

0

(
e−rηŃ (−d2(Sη, K, η))

∂(−d1(Sη, K, η)

∂η

)
dη

+K

∫ τ

0

(
e−rηŃ (−d2(Sη, K, η))

) σ

2
√
η
dη

(4.187)

where Ń (y) = n(y) is the density function of a standard normal distributed

random variable y and the following identities

Ń (−d1(Sη, K, η)) = Ń (d1(Sη, K, η)),

Ń (−d2(Sη, K, η)) = Ń (d2(Sη, K, η))

and

Sηe
−qηŃ (d1(Sη, K, η)) = Ke−rηN (d2(Sη, K, η)).
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Therefore,

Ep(Sτ , τ) = (K − Sτ )H(K − Sτ ) + Sτ .H(X − Sτ )− Sτe−qτN (−d1(Sτ , K, τ))

− rK
∫ τ

0

e−rηN (−d2(Sη, K, η))dη

+ Sτ

∫ τ

0

(
e−qηŃ (−d1(Sη, K, η))

∂

∂η
(−d1(Sη, K, η)

)
dη

+ Sτ

∫ τ

0

(
e−qηŃ (−d1(Sη, K, η))

) σ

2
√
η
dη

Ep(Sτ , τ) = (K − Sτ )+ − rK
∫ τ

0

e−rηN (−d2(Sη, K, η))dη

+
σ2

2
Sτ

∫ τ

0

(
e−qηŃ (−d1(Sη, K, η))

) 1

σ
√
η
dη

− Sτ
[
e−qτŃ (−d1(Sτ , K, τ))−H(K − Sτ )

]
−
∫ τ

0

(
e−qηŃ (−d1(Sη, K, η))

∂

∂η
(−d1(Sη, K, η)

)
dη

(4.188)

Solving (4.188) further yields

Ep(Sτ , τ) = (K − Sτ )+ − rK
∫ τ

0

e−rηN (−d2(Sη, K, η))dη

+
σ2

2
Sτ

∫ τ

0

(
e−qηŃ (−d1(Sη, K, η))

) 1

σ
√
η
dη

− Sτ [e−qηŃ (−d1(Sη, K, η))]|τ0∫ τ

0

(
e−qηŃ (−d1(Sη, K, η))

∂

∂η
(−d1(Sη, K, η)

)
dη

(4.189)

Changing the integration variable from η to τ − η, (4.189) yields

Ep(Sτ , τ) = (K − Sτ )+ − rK
∫ τ

0

e−r(τ−η)N (−d2(Sτ , K, τ − η))dη

+
σ2

2
Sτ

∫ τ

0

(
e−q(τ−η)Ń (−d1(Sτ , K, τ − η))

) 1

σ
√
τ − η

dη

+ qSτ

∫ τ

0

e−q(τ−η)N (−d1(Sτ , K, τ − η))dη

(4.190)
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Substituting (4.190) into (4.171) leads to

Ap(Sτ , τ) = (K − Sτ )+ − rK
∫ τ

0

e−r(τ−η)N (−d2(Sτ , K, τ − η))dη

+
σ2

2
Sτ

∫ τ

0

(
e−q(τ−η)Ń (−d1(Sτ , K, τ − η))

) 1

σ
√
τ − η

dη

+ qSτ

∫ τ

0

e−q(τ−η)N (−d1(Sτ , K, τ − η))dη

+

∫ τ

0

rKe−r(τ−η)N(−d2(Sτ , S̄η, τ − η))dη

−
∫ τ

0

qSτe
−q(τ−η)N(−d1(Sτ , S̄η, τ − η))dη

(4.191)

Rearranging terms, (4.191) becomes

Ap(Sτ , τ) = (K − Sτ )+ +
σ2Sτ

2

∫ τ

0

e−q(τ−η)

σ
√
τ − η

Ń (−d1(S,K, τ − η))dη

+

∫ τ

0

rKe−r(τ−η)[N (−d2(Sτ , S̄(η), τ − η))−N (−d2(Sτ , K, τ − η))]dη

−
∫ τ

0

qSτe
−q(τ−η)[N (−d1(Sτ , S̄(η), τ − η))−N (−d1(Sτ , K, τ − η))]dη

where τ = T − t, Sτ > S̄τ , d1 and d2 are given by (4.182). Hence (4.126)

reduces to (4.181). This completes the proof.

Remark 4.5.4

The integral representation given by (4.126) with n = 1, (4.171) and

(4.181) are equivalent.

The following result showed the behaviour of the free boundary of American

power put option near maturity.

Theorem 4.5.7

If the underlying asset price follows a lognormal diffusion process and the risk-

free interest rate is a positive constant, then the optimal exercise boundary
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(free boundary) of the American power put option with dividend yield at

maturity is given by

lim
τ→0

S̄nτ
K

=

{
r
q
, for q > r

1, for q ≤ r
(4.192)

Proof: Changing the time variable τ = T − t in (4.128) leads to

K − S̄nτ = En
p (S̄nτ , τ)

+
rK

2πi

∫ c+i∞

c−i∞
(Snτ )−ω

∫ τ

0

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(τ−y)dydω

− q

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ τ

0

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(τ−y)dydω (4.193)

where t is the current time, τ is the reversed time and T is the time to expiry.

Let

Anτ =
1

2πi

∫ c+i∞

c−i∞
(S̄nτ )−ω

∫ τ

0

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(τ−y)dydω (4.194)

and

Bn
τ =

1

2πi

∫ c+i∞

c−i∞
(S̄nτ )−ω

∫ τ

0

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(τ−y)dydω (4.195)

Equation (4.193) becomes

K − S̄nτ = En
p (S̄nτ , τ) + rKAnτ − qS̄nτBn

τ (4.196)

where

En
p (S̄nτ , τ) = Ke−rτN (−d2,n)

− S̄nτ e(
r(n−1)−nq+ 1

2
n(n−1)σ2)τN (−d1,n)

(4.197)
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with

N (−d1,n) = 1−N (d1,n),N (−d2,n) = 1−N (d2,n) (4.198)

Substituting (4.197) and (4.198) into (4.196) yields

K − S̄nτ = Ke−rτ (1−N (d2,n))

− S̄nτ e(
r(n−1)−nq+ 1

2
n(n−1)σ2)τ (1−N (d1,n))

+ rKAnτ − qS̄nτBn
τ

Rearranging terms lead to a relation

S̄nτ
K

=
(1− e−rτ (1−N (d2,n))− rAnτ )(

1− e(r(n−1)−nq+ 1
2
n(n−1)σ2)τ (1−N (d1,n))− qBn

τ

) (4.199)

For the first case, the implicit equation for S̄nτ reads

lim
τ→0

(
S̄nτ
K

)
=

(
r

q

)
lim
τ→0

(
Anτ
Bn
τ

)
The complex integrals for Anτ and Bn

τ are given by

Anτ (c) =
1

2πi

∫ c+i∞

c−i∞
(S̄nτ )−ω

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(τ−y)dω

and

Bn
τ (c) =

1

2πi

∫ c+i∞

c−i∞
(S̄nτ )−ω

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(τ−y)dω

respectively. By means of (4.162)

Anτ (c) = e−r(τ−y)

and

Bn
τ (c) = e(r(n−1)−nq+ 1

2
n(n−1)σ2)(τ−y)
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Therefore (4.194) and (4.195) become respectively

Anτ =

∫ τ

0

Anτ (c)dy

=

∫ τ

0

e−r(τ−y)dy

=
1

r
(1− e−rτ )

and

Bn
τ =

∫ τ

0

Bn
τ (c)dy

=

∫ τ

0

e(r(n−1)−nq+ 1
2
n(n−1)σ2)(τ−y)dy

=
e(r(n−1)−nq+ 1

2
n(n−1)σ2)τ − 1(

r(n− 1)− nq + 1
2
n(n− 1)σ2

)
Putting the results together leads to

lim
τ→0

(
S̄nτ
K

)
=

(
r

q

)
lim
τ→0

 1
r
(1− e−rτ )

e(r(n−1)−nq+1
2n(n−1)σ2)τ−1

(r(n−1)−nq+ 1
2
n(n−1)σ2)


Using the L’Hospital rule;

lim
τ→0

(
S̄nτ
K

)
=

(
r

q

)
lim
τ→0

(
e−rτ

e(r(n−1)−nq+ 1
2
n(n−1)σ2)τ

)
=
r

q

Thus,

lim
τ→0

S̄nτ =
rK

q
for q > r (4.200)

For the second case, the limits of the constants d1,n and d2,n are obtained as

follows;

lim
τ→0

d1,n = lim
τ→0

d1,n(S̄nτ , K, τ) =

{
0, for S̄n(0) = K
−∞, for S̄n(0) < K
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and

lim
τ→0

d2,n = lim
τ→0

d2,n(S̄nτ , K, τ) =

{
0, for S̄n(0) = K
−∞, for S̄n(0) < K

Therefore,

lim
τ→0
N (d1,n(S̄nτ , K, τ)) = lim

τ→0
N (d2,n(S̄nτ , K, τ)) =

1

2

Taking the limit of (4.199) as τ → 0 and by means of last relation yields

lim
τ→0

(
S̄nτ
K

)
=

1
2
− r limτ→0A

n
τ

1
2
− q limτ→0Bn

τ

Since

lim
τ→0

Anτ = lim
τ→0

Bn
τ = 0

Hence,

lim
τ→0

(
S̄nτ
K

)
= 1

lim
τ→0

S̄nτ = K for q ≤ r (4.201)

Using (4.200) and (4.201), the optimal exercise boundary of the American

power put option at maturity is given by

lim
τ→0

S̄nτ =

{
rK
q
, for q > r

K, for q ≤ r

Hence (4.192) is established.

Remark 4.5.5

(i) From (4.200), it is observed that when q > r and Snτ < K, the American

power put can have a positive value at expiration given that it has not

been exercised earlier.
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(ii) From (4.201), it is observed that when q ≤ r and Snτ = K, the American

power put will have a zero payoff at expiration even if it has not been

exercised earlier.

4.6 Perpetual American Power Put Option

Valuation

Now, the applications of the integral representations in (4.114) and (4.126)

to power options which have no expiry date are presented. The expression

for the free boundary of the perpetual American power put option and its

closed form solution for both non-dividend and dividend yields, using the

Mellin transform method was given by the following result.

Theorem 4.6.1

Consider the perpetual American power put option with non-dividend yield.

If T → ∞ and 0 < <(ω) < ω2, then the free boundary of the perpetual

American power put option is given by

Ŝn∞ = Ŝn∞(t) = K
α2

(ω2 − ω1)
(4.202)

and the price of the perpetual American power put option becomes

P n
∞(Snt , t) =

α2K

ω2(ω2 − ω1)

(
Snt

Ŝn∞

)−ω2

for Ŝn∞ < Snt (4.203)

where

α2 =
2r

n2σ2
(4.204)
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Proof: The integral representation for the price of the American power put

option which pays no dividend yield given by (4.114) can be expressed as

P n
A(Snt , t) = P n

E(Snt , t) + P n
1 (Snt , t) (4.205)

where

P n
E(Snt , t) = Ke−r(T−t)N (−d2,n)

− Snt e(
r(n−1)+ 1

2
n(n−1)σ2)(T−t)N (−d1,n)

(4.206)

with

d1,n =
ln
(
Snt
K

)
+ n

(
r +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√
T − t

d2,n =
ln
(
Snt
K

)
+ n

(
r − σ2

2

)
(T − t)

nσ
√
T − t

and

P n
1 (Snt , t) =

rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(Ŝny )ω

ω
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)dydω (4.207)

For (4.205) to hold as T → ∞, it is necessary that <(ω2 + α1ω − α2) < 0,

that is 0 < <(ω) < ω2, where ω2 is one of the roots of ω2 + α1ω − α2 = 0.

Using the super-contact condition (4.104), the perpetual American power

put option as T →∞ becomes

∂P n
A(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

=
∂P n

E(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

+
∂P n

1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

= −1 (4.208)

where the free boundary Ŝnt = Ŝn∞ is now independent of time. Now, Differ-

entiating (4.206) with respect to Snt at Snt = Ŝn∞ yields

∂P n
E(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

= −e(r(n−1)+ 1
2
n(n−1)σ2)(T−t)N (−d̂1,n) (4.209)
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where

d̂1,n =
ln
(
Ŝn∞
K

)
+ n

(
r +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√
T − t

(4.210)

As T →∞, d̂1,n →∞ and therefore

∂P n
E(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

→ 0 (4.211)

Also consider the P n
1 (Snt , t) term,

∂P n
1 (Snt , t)

∂Snt
= −rK

2πi

∫ c+i∞

c−i∞
(Snt )−1

(∫ T

t

(
Snt

Ŝny

)−ω
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)dy

)
dω

(4.212)

Taking the limit of (4.212) as T →∞ yields

∂P n
1 (Snt , t)

∂Snt
= −rK

2πi

∫ c+i∞

c−i∞
(Snt )−1

(∫ ∞
t

(
Snt

Ŝn∞

)−ω
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)dy

)
dω

(4.213)

Therefore,

∂P n
1 (Snt , t)

∂Snt
= −rK

2πi

∫ c+i∞

c−i∞
(Snt )−1

(
Snt

Ŝn∞

)−ω(
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)

1
2
n2σ2(ω2 + α1ω − α2)

∣∣∣∣∣
∞

t

)
dω

= −rK
2πi

2

n2σ2

∫ c+i∞

c−i∞
(Snt )−1

(
Snt

Ŝn∞

)−ω(
e

1
2
n2σ2(ω2+α1ω−α2)(y−t)

(ω2 + α1ω − α2)

∣∣∣∣∣
∞

t

)
dω

=
rK

2πi

2

n2σ2

∫ c+i∞

c−i∞
(Snt )−1

(
Snt

Ŝn∞

)−ω
dω

(ω2 + α1ω − α2)

Thus,

∂P n
1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

=
K

2πi

2r

n2σ2

∫ c+i∞

c−i∞

dω

Ŝn∞(ω2 + α1ω − α2)
(4.214)
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Since α2 = 2r
n2σ2 , (4.214) becomes

∂P n
1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

=
α2K

2πi

∫ c+i∞

c−i∞

dω

Ŝn∞(ω2 + α1ω − α2)
(4.215)

But ω2 + α1ω − α2 = (ω − ω1)(ω − ω2), where

ω =
−α1 ±

√
α2

1 + 4α2

2
(4.216)

ω1 =
−α1 −

√
α2

1 + 4α2

2
(4.217)

ω2 =
−α1 +

√
α2

1 + 4α2

2
(4.218)

The limiting cases ω1 and ω2 are the roots of ω2 + α1ω − α2. Hence (4.215)

becomes

∂P n
1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

=
α2K

2πi

∫ c+i∞

c−i∞

dω

Ŝn∞(ω − ω1)(ω − ω2)
(4.219)

By applying the residue theorem in (4.162), then (4.219) leads to a relation

∂P n
1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

= α2
K

Ŝn∞(ω1 − ω2)
(4.220)

Substituting (4.211) and (4.220) into (4.208) gives

∂P n
A(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

= 0 + α2
K

Ŝn∞(ω1 − ω2)
= −1

The free boundary of a perpetual American power put option is obtained as

Ŝn∞ = K
α2

(ω2 − ω1)
(4.221)

Next, use (4.221) to derive an expression for the price of perpetual American

power put option P n
∞(Snt , t). Note that the price of a perpetual European
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power put option is zero, since it can never be exercised. Therefore, taking

the limit as T → ∞ in (4.205), the price of perpetual American power put

option for Snt > Ŝn∞ is given by

P∞(Snt , t) =
rK

2πi

∫ c+i∞

c−i∞

(
Snt

Ŝn∞

)−ω
1

ω

(∫ ∞
t

e
1
2
n2σ2(ω2+α1ω−α2)(y−t)dy

)
dω

(4.222)

where <(ω2 +α1ω−α2) < 0. Integrating the inner integral (that is, the time

variable) in (4.222) leads to

P∞(Snt , t) = −rK
2πi

2

n2σ2

∫ c+i∞

c−i∞

(
Snt

Ŝn∞

)−ω
dω

ω(ω − ω1)(ω − ω2)
(4.223)

Once again applying the residue theorem (4.162) to get

P n
∞(Snt , t) =

α2K

ω2(ω2 − ω1)

(
Snt

Ŝn∞

)−ω2

for Ŝn∞ < Snt (4.224)

Equation (4.224) is the price of a perpetual American power put option. This

completes the proof.

Theorem 4.6.2

Consider the perpetual American power put option with dividend yield. If

T → ∞ and 0 < <(ω) < ω2, then the free boundary of the perpetual

American power put option is given by

S̄n∞ =
α2(n2σ2(ω1 − ω2)(ω2 + 1))

(2qω2 − (n2σ2(ω1 − ω2)(ω2 + 1)))(ω1 − ω2)
K (4.225)

and the price of perpetual American power put option equals

An∞(Snt , t) =
1

(ω2 − ω1)

(
Snt
S̄n∞

)−ω2
(
α2K

ω2

− 2q

n2σ2

S̄n∞
(ω2 + 1)

)
for S̄n∞ < Snt

(4.226)
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where

ω1 =
−α∗1 −

√
(α∗1)2 + 4α2

2

ω2 =
−α∗1 +

√
(α∗1)2 + 4α2

2

and

α∗1 =

(
1− n− 1

n
− 2(r − q)

nσ2

)
, α2 =

2r

n2σ2

Proof: The integral representation for the price of the American power put

option which pays dividend yield given by (4.126) can be expressed as

Anp (Snt , t) = En
p (Snt , t) + Zn

1 (Snt , t) + Zn
2 (Snt , t) (4.227)

where En
p (Snt , t), Z

n
1 (Snt , t) and Zn

2 (Snt , t) are given by

En
p (Snt , t) = Ke−r(T−t)N (−d2,n)

− Snt e(
r(n−1)−nq+ 1

2
n(n−1)σ2)(T−t)N (−d1,n)

(4.228)

with

d1,n =
ln
(
Snt
K

)
+ n

(
r − q +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√
T − t

d2,n =
ln
(
Snt
K

)
+ n

(
r − q − σ2

2

)
(T − t)

nσ
√
T − t

Zn
1 (Snt , t) =

rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω (4.229)

and

Zn
2 (Snt , t) = − q

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

(4.230)
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respectively. The roots of ω2 + α∗1ω − α2 = 0 are

ω1 =
−α∗1 +

√
(α∗1)2 + 4α2

2

and

ω2 =
−α∗1 −

√
(α∗1)2 + 4α2

2

with

α∗1 =

(
1− n− 1

n
− 2(r − q)

nσ2

)
, α2 =

2r

n2σ2

Thus,

ω2 + α∗1ω − α2 = (ω − ω1)(ω − ω2)

Notice that for the valuation formula (4.227) to hold as T → ∞, it is nec-

essary that <(ω2 + α∗1ω − α2) < 0, that is 0 < <(ω) < ω2. Using the

super-contact condition given by (4.121) as T → ∞, perpetual American

power put which pays dividend yield becomes

∂Anp (Snt , t)

∂Snt

∣∣∣∣∣
Snt =S̄n∞

=
∂En

p (Snt , t)

∂Snt

∣∣∣∣∣
Snt =S̄n∞

+
∂Zn

1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =S̄n∞

+
∂Zn

2 (S̄n∞, t)

∂S̄n∞

∣∣∣∣∣
Snt =S̄n∞

= −1

(4.231)

where the free boundary S̄n∞ is now independent of time. Now, the derivative

of the price of European power put option En
p (Snt , t) which pays dividend

yield with respect to Snt at Snt = S̄n∞ is determined as

∂En
p (Snt , t)

∂Snt

∣∣∣
Snt =S̄n∞

= −e(r(n−1)−nq+ 1
2
n(n−1)σ2)(T−t)N (−d̄1,n)
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where

d̄1,n =
ln
(
S̄n∞
K

)
+ n

(
r − q +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√
T − t

As T →∞, d̄1,n →∞ and therefore

∂En
p (Snt , t)

∂Snt

∣∣∣∣∣
Snt =S̄n∞

→ 0 (4.232)

Now, differentiating (4.229) with respect to Snt and taking the limit as T →∞

to obtain

∂Zn
1 (Snt , t)

∂Snt
= −rK

2πi

∫ c+i∞

c−i∞
(Snt )−1

(∫ ∞
t

(
Snt
S̄n∞

)−ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dy

)
dω

= −rK
2πi

∫ c+i∞

c−i∞
(Snt )−1

((
Snt
S̄n∞

)−ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)

n2σ2

2
(ω2 + α∗1ω − α2)

∣∣∣∣∣
∞

t

)
dω

Therefore,

∂Zn
1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =S̄n∞

=
K

2πi

2r

n2σ2

∫ c+i∞

c−i∞

dω

S̄n∞(ω2 + α∗1ω − α2)
(4.233)

Equation (4.233) can be expressed as

∂Zn
1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =S̄n∞

=
α2K

2πi

∫ c+i∞

c−i∞

dω

S̄n∞(ω − ω1)(ω − ω2)
dω (4.234)

where α2 = 2r
n2σ2 and ω2 + α∗1ω − α2 = (ω − ω1)(ω − ω2). By the application

of the residue theorem (4.162), (4.234) becomes

∂Zn
1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =S̄n∞

=
α2K

S̄n∞(ω1 − ω2)
(4.235)
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In the same manner, setting T →∞ and differentiating (4.230) with respect

to Snt leads to

∂Zn
2 (Snt , t)

∂Snt
=

q

2πi

∫ c+i∞

c−i∞

(∫ ∞
t

ω

ω + 1

(
Snt
S̄n∞

)−(ω+1)

e
1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dy

)
dω

= − q

2πi

∫ c+i∞

c−i∞

ω

ω + 1

(
Snt
S̄n∞

)−(ω+1)
(
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)

n2σ2

2
(ω2 + α∗1ω − α2)

∣∣∣∣∣
∞

t

)
dω

= − 2

n2σ2

q

2πi

∫ c+i∞

c−i∞

ω

ω + 1

(
Snt
S̄n∞

)−(ω+1)
dω

ω2 + α∗1ω − α2

= − 2q

n2σ2

1

2πi

∫ c+i∞

c−i∞

ω

ω + 1

(
Snt
S̄n∞

)−(ω+1)
dω

ω2 + α∗1ω − α2

Therefore,

∂Zn
2 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =S̄n∞

= − 2q

n2σ2

1

2πi

∫ c+i∞

c−i∞

ω

(ω + 1)(ω2 + α∗1ω − α2)
dω (4.236)

By the application of residue theorem (4.162), then (4.236) becomes

∂Zn
2 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =S̄n∞

= − 2q

n2σ2

(
ω1

(ω1 + 1)(ω1 − ω2)
− 1

(ω1 + 1)(ω2 + 1)

)
(4.237)

Substituting (4.232), (4.235) and (4.237) into (4.231) and by means of the

super contact condition, yields

∂Anp (Snt , t)

∂Snt

∣∣∣∣∣
Snt =S̄n∞

=
α2K

S̄n∞(ω1 − ω2)

− 2q

n2σ2

(
ω1

(ω1 + 1)(ω1 − ω2)
− 1

(ω1 + 1)(ω2 + 1)

)
= −1

(4.238)

Simplifying (4.238) further leads to a relation

α2K

S̄n∞(ω1 − ω2)
− 2q

n2σ2

(
ω2

(ω1 − ω2)(ω2 + 1)

)
= −1 (4.239)
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Therefore, the free boundary of perpetual American power put option which

pays dividend yield is obtained as

S̄n∞ =
α2(n2σ2(ω1 − ω2)(ω2 + 1))

(2qω2 − (n2σ2(ω1 − ω2)(ω2 + 1)))(ω1 − ω2)
K

Hence (4.225) is established.

Once again using the fact that <(ω2 + α∗1ω − α2) < 0, taking the limit

T → ∞ in (4.227) and integrating the time variable leads to the price for

the perpetual American power put option with dividend yield for Snt > S̄n∞

given by

An∞(Snt , t) = −α2K

2πi

∫ c+∞

c−i∞

(
Snt
S̄n∞

)−ω
dω

ω(ω − ω1)(ω − ω2)

+
2q

n2σ2

1

2πi

∫ c+∞

c−i∞
S̄n∞

(
Snt
S̄n∞

)−ω
dω

(ω + 1)(ω − ω1)(ω − ω2)

(4.240)

Using the residue theorem (4.162), then (4.240) becomes

An∞(Snt , t) =

(
Snt
S̄n∞

)−ω2 α2K

ω2(ω2 − ω1)

− 2q

n2σ2

(
Snt
S̄n∞

)−ω2 S̄n∞
(ω2 + 1)(ω2 − ω1)

(4.241)

Hence, the price of perpetual American power put option is obtained as

An∞(Snt , t) =
1

(ω2 − ω1)

(
Snt
S̄n∞

)−ω2
(
α2K

ω2

− 2q

n2σ2

S̄n∞
(ω1 + 1)

)
This completes the proof.

Remark 4.6.1

(i) Note that the price of a perpetual European power put option with non-

dividend and dividend yields, respectively is zero, since it can never be

exercised before expiration.
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(ii) By setting n = 1 and Ŝ∞ = S∗∞ in (4.221) and (4.224), the free bound-

ary and the price of the perpetual American put option with non-

dividend yield derived by Panini and Srivastav (2005) are given by

S∗∞ =
k1

k1 + 1
K, where k1 =

2r

σ2
(4.242)

and

P∞(S, t) = (K − S∗∞)

(
S

S∗∞

)− 2r
σ2

(4.243)

respectively.

(iii) Setting n = 1 and S̄∞ = S∗∞ in (4.225) and (4.226), the free boundary

and the price of the American put option with dividend yield derived

by Frontczak and Schöbel (2008) are obtained as

S∗∞ =
ω2

ω2 + 1
K (4.244)

with ω2 = k2−1
2

+

√
(k2−1)2+4k1

2
, k1 = 2r

σ2 , k2 = 2(r−q)
σ2

and

A∞(S, t) = (K − S∗∞)

(
S

S∗∞

)−ω2

(4.245)

respectively.

4.7 Closed-Form Solution for the Price of the

American Power Put Option

The numerical result for the valuation of American power put options on a

stock with dividend yield is presented below:
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From (4.126), the integral representation for the price of the American power

put option which pays dividend yield is given by

Anp (Snt , t) =
1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1
2
n2σ2(ω2+α∗1ω−α2)(T−t)(Snt )−ωdω

+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

− q

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

(4.246)

where En
p (Snt , t) is the integral representation for the price of the European

power put option with dividend yield which reduces to the Black-Scholes-

Merton-like valuation formula of the form:

En
p (Snt , t) = Ke−r(T−t)N (−d2,n)

− Snt e(r(n−1)−nq+ 1
2
n(n−1)σ2)(T−t))N (−d1,n)

(4.247)

with

N (−d1,n) = 1−N (d1,n),N (−d2,n) = 1−N (d2,n),

d1,n =
ln
(
Snt
K

)
+ n

(
r − q +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√

(T − t)
,

d2,n = d1,n − nσ
√

(T − t) =
ln
(
Snt
K

)
+ n

(
r − q − 1

2
σ2
)

(T − t)

nσ
√

(T − t)


(4.248)

The free boundary S̄nt is determined as the solution of

K − S̄nt = En
p (S̄nt , t)

+
rK

2πi

∫ c+i∞

c−i∞
(S̄nt )−ω

∫ T

t

(S̄ny )ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

− q

2πi

∫ c+i∞

c−i∞
(S̄nt )−ω

∫ T

t

(S̄ny )ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)(y−t)dydω

(4.249)

127



UNIV
ERSIT

Y O
F 

IB
ADAN LI

BRARY

where

α∗1 =

(
1− n− 1

n
− 2(r − q)

nσ2

)
,

α2 =
2r

n2σ2


(4.250)

To evaluate the integral (4.246), first transform the time variable t to

τ = T − t. Then (4.246) becomes

Anp (Snτ , τ) = En
p (Snτ , τ)

+
rK

2πi

∫ c+i∞

c−i∞
(Snτ )−ω

∫ τ

0

(S̄nτ−η)
ω

ω
e

1
2
n2σ2(ω2+α∗1ω−α2)ηdηdω

− q

2πi

∫ c+i∞

c−i∞
(Snτ )−ω

∫ τ

0

(S̄nτ−η)
ω+1

ω + 1
e

1
2
n2σ2(ω2+α∗1ω−α2)ηdηdω

(4.251)

where

η = τ − y

Equation (4.251) is in the transformed coordinates. Rearranging terms and

setting R(ω) = ω2 + α∗1ω − α2 = ω2 +
(

1− n−1
n
− 2(r−q)

nσ2

)
ω − 2r

n2σ2 in (4.251)

yields

Anp (Snτ , τ) = En
p (Snτ , τ)

+
rK

2πi

∫ c+i∞

c−i∞

∫ τ

0

1

ω

(
Snτ
S̄nτ−η

)−ω
e

1
2
n2σ2R(ω)ηdηdω

− q

2πi

∫ c+i∞

c−i∞

∫ τ

0

(Snτ )−ω
(S̄nτ−η)

ω+1

ω + 1
e

1
2
n2σ2R(ω)ηdηdω

(4.252)

For n = 1, (4.252) becomes

Ap(Sτ , τ) = Ep(Sτ , τ)

+
rK

2πi

∫ c+i∞

c−i∞

∫ τ

0

1

ω

(
Sτ
S̄τ−η

)−ω
e

1
2
σ2R0(ω)ηdηdω

− q

2πi

∫ c+i∞

c−i∞

∫ τ

0

(Sτ )
−ω (S̄τ−η)

ω+1

ω + 1
e

1
2
σ2R0(ω)ηdηdω

(4.253)
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where

R0(ω) = ω2 +

(
1− 2(r − q)

σ2

)
ω − 2r

σ2

= ω2 + (1− e2)ω − e1

(4.254)

e1 =
2r

σ2
(4.255)

e2 =
2(r − q)
σ2

(4.256)

Next, let

M1 =
rK

2πi

∫ c+i∞

c−i∞

∫ τ

0

1

ω

(
Sτ
S̄τ−η

)−ω
e

1
2
σ2R0(ω)ηdηdω (4.257)

M2 =
q

2πi

∫ c+i∞

c−i∞

∫ τ

0

(Sτ )
−ω (S̄τ−η)

ω+1

ω + 1
e

1
2
σ2R0(ω)ηdηdω (4.258)

Therefore, (4.253) becomes

Ap(Sτ , τ) = Ep(Sτ , τ) +M1 −M2 (4.259)

Consider (4.257) and setting

I1(η) =
rK

2πi

∫ c+i∞

c−i∞

1

ω

(
Sτ
S̄τ−η

)−ω
e

1
2
σ2R0(ω)ηdω (4.260)

Then (4.257) leads to a relation

M1 =

∫ τ

0

I1(η)dη (4.261)

To evaluate the integral in (4.260), let

ω = c+ ix⇒ dω = idx (4.262)
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Substituting (4.262) into (4.260) leads to

I1(η) =
rK

2π
e−rη−αc

2+βc

∫ ∞
−∞

(
c− ix
c2 + x2

)
e−αx

2+iβxdx (4.263)

where

α =
σ2η

2

β = α

(
1− 2(r − q)

σ2
+ 2c

)
− ln

(
Sτ
S̄τ−η

)
1 < c <∞


(4.264)

Following the procedures of Panini and Srivastav (2004) for the case of non-

dividend yield and using the identity

eiβx = cos βx+ i sin βx (4.265)

Therefore,

I1(η) =
rK

2π
e−rη−αc

2+βc

∫ ∞
−∞

(
(c− ix)(cos βx+ i sin βx)

c2 + x2

)
e−αx

2

dx

=
rK

2π
e−rη−αc

2+βc

∫ ∞
−∞

(
(c cos βx+ x sin βx)

c2 + x2

)
e−αx

2

dx

(4.266)

where the real part of the last integral is taken into consideration. For an

efficient and better accuracy pricing of American power put option for the

case of n=1, (4.266) is transformed to a form that permits the use of Gauss-

Laguerre quadrature method as follows:

I1(η) =
rK

π
e−rη−αc

2+βc

∫ ∞
0

(
(c cos βx+ x sin βx)

c2 + x2

)
e−αx

2

dx
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Setting Q = e−rη−αc
2+βc, the last integral equation becomes

I1(η) = Q
rK

π

(∫ ∞
0

(
c cos βx

c2 + x2

)
e−αx

2

dx+

∫ ∞
0

(
x sin βx

c2 + x2

)
e−αx

2

dx

)
(4.267)

Using the following standard integrals (Gradshteyn and Ryzhik (2007)):∫
eax sin(bx)dx =

eax(a sin bx− b cos bx)

a2 + b2
(4.268)

and ∫
eax cos(bx)dx =

eax(a cos bx+ b sin bx)

a2 + b2
(4.269)

and by replacing c
c2+x2

with a cosine transform (Erdelyi et al. (1954)), (4.267)

becomes

I1(η) = Q
rK

π

∫ ∞
0

∫ ∞
0

e−αx
2

e−cy cos βx cosxy dxdy

+Q
rK

π

∫ ∞
0

∫ ∞
0

e−αx
2

e−cy sin βx sinxy dxdy

(4.270)

Using the following product rules for sine and cosine functions given by

2 sinx sin y = cos(x− y)− cos(x+ y) (4.271)

and

2 cosx cos y = cos(x− y) + cos(x+ y) (4.272)

respectively to get

I1(η) = Q
rK

2π

∫ ∞
0

e−cy
∫ ∞

0

(cos(x(β − y)) + cos(x(β + y)))e−αx
2

dxdy

+Q
rK

2π

∫ ∞
0

e−cy
∫ ∞

0

(cos(x(β − y))− cos(x(β + y)))e−αx
2

dxdy

(4.273)
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Using the procedures of Erdelyi et al. (1954) and Gradshteyn and Ryzhik

(2007), then ∫ ∞
0

cos(x(β + y))e−αx
2

dx =
1

2

√
π

α
e−

(β+y)2

4α (4.274)∫ ∞
0

cos(x(β − y))e−αx
2

dx =
1

2

√
π

α
e−

(β−y)2
4α (4.275)

By means of (4.274) and (4.275), (4.273) yields

I1(η) = Q
rK

4π

∫ ∞
0

e−cy
(√

π

α
e−

(β−y)2
4α +

√
π

α
e−

(β+y)2

4α

)
dy

+Q
rK

4π

∫ ∞
0

e−cy
(√

π

α
e−

(β−y)2
4α −

√
π

α
e−

(β+y)2

4α

)
dy

= Q
rK

2
√
απ

∫ ∞
0

e−
(β−y)2

4α e−cydy

(4.276)

The integral in (4.276) can be evaluated accurately by means of a N -point

Gauss-Laguerre quadrature method as follows:∫ ∞
0

e−
(β−y)2

4α e−cydy =
1

c

∫ ∞
0

e−yφ0

(y
c

)
≈ 1

c

N∑
j=1

ωjφ0

(yj
c

) (4.277)

Next, consider (4.258) given by

M2 =
q

2πi

∫ c+i∞

c−i∞

∫ τ

0

(Sτ )
−ω (S̄τ−η)

ω+1

ω + 1
e

1
2
σ2R0(ω)ηdηdω

Let

I2(η) =
q

2πi

∫ c+i∞

c−i∞
(Sτ )

−ω (S̄τ−η)
ω+1

ω + 1
e

1
2
σ2R0(ω)ηdω (4.278)

Therefore,

M2 =

∫ τ

0

I2(η)dη (4.279)
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Using (4.262) and following the above procedures, therefore

I2(η) = Q
q

π
S̄τ−η

∫ ∞
0

(
(c− 1) cos βx+ x sin βx

(c− 1)2 + x2

)
e−αx

2

dx

= Q
q

π
S̄τ−η

∫ ∞
0

(
(c− 1) cos βx

(c− 1)2 + x2

)
e−αx

2

dx

+Q
q

π
S̄τ−η

∫ ∞
0

(
x sin βx

(c− 1)2 + x2

)
e−αx

2

dx

(4.280)

Once again by means of the standard integrals given by (4.268) and (4.269)

and replacing c−1
(c−1)2+x2

with a cosine transform (Erdelyi et al. (1954) and

Gradshteyn and Ryzhik (2007)). Equation (4.280) becomes

I2(η) = Q
q

π
S̄τ−η

∫ ∞
0

∫ ∞
0

e−αx
2

e−(c−1)y cos βx cosxy dxdy

+Q
q

π
S̄τ−η

∫ ∞
0

∫ ∞
0

e−αx
2

e−(c−1)y sin βx sinxy dxdy

(4.281)

Again, using the product rules for the sine and cosine functions given by

(4.271) and (4.272) respectively to get

I2(η) = Q
q

2π
S̄τ−η

∫ ∞
0

e−(c−1)y

∫ ∞
0

(cos(x(β − y)) + cos(x(β + y)))e−αx
2

dxdy

+Q
q

2π
S̄τ−η

∫ ∞
0

e−(c−1)y

∫ ∞
0

(cos(x(β − y))− cos(x(β + y)))e−αx
2

dxdy

(4.282)

Substituting (4.274) and (4.275) into (4.280) and solving further yields

I2(η) = Q
q

2
√
απ

S̄τ−η

∫ ∞
0

e−
(β−y)2

4α e−(c−1)ydy (4.283)

Finally, for better accuracy the above integral in (4.283) can be approximated

by means of the N-point Gauss-Laguerre quadrature method. Therefore,∫ ∞
0

e−
(β−y)2

4α e−(c−1)ydy =
1

c− 1

∫ ∞
0

e−yφ0

(
y

c− 1

)
≈ 1

c− 1

N∑
j=1

ωjφ0

(
yj

c− 1

) (4.284)
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where

φ0(y) = e−
(β−y)2

4α

ωj and yj are the weight and abscissa of the Gauss-Laguerre quadrature

method. Substituting (4.277) and (4.284) into (4.276) and (4.283), respec-

tively yields

I1(η) = Q
rK

2
√
απ

1

c

N∑
j=1

ωjφ0

(yj
c

)
(4.285)

and

I2(η) = Q
q

2
√
απ

Sτ−η
1

c− 1

N∑
j=1

ωjφ0

(
yj

c− 1

)
(4.286)

Using (4.259), (4.261), (4.279), (4.285), (4.286) and the value of Q, then the

following approximation for the price of the American power put option for

the case of n = 1 is obtained as

Ap(Sτ , τ) = Ep(Sτ , τ)

+

∫ τ

0

e−rη−αc
2+βc rK

2c
√
απ

N∑
j=1

ωjφ0

(yj
c

)
dη

−
∫ τ

0

e−rη−αc
2+βc qS̄τ−η

2(c− 1)
√
απ

N∑
j=1

ωjφ0

(
yj

c− 1

)
dη

(4.287)

Remark 4.7.1

(i) The integrals in (4.287) are evaluated by means of trapezoidal rule.

(ii) The weights ωj, j = 1, 2, ..., N are determined by

ωj =
yj

(N + 1)2LN+1(yj)2
(4.288)

with LN(y), the N-th Laguerre polynomial defined by

LN(y) =
ey

N !

dN

dyN
(e−xyN) (4.289)
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(iii) The calculation of the price of American power put option for the case

of n = 1 assumes that S̄τ is known for all τ .

Setting τ = T − t and n = 1 in (4.249) yields

K − S̄τ = Ep(S̄τ , τ)

+
rK

2πi

∫ τ

0

∫ c+i∞

c−i∞

1

ω

(
S̄τ
S̄τ−η

)−ω
e

1
2
σ2R0(ω)ηdηdω

− q

2πi

∫ τ

0

∫ c+i∞

c−i∞
(S̄τ )

−ω (S̄τ−η)
ω+1

ω + 1
e

1
2
σ2R0(ω)ηdηdω

(4.290)

where η = τ−y and R0(ω) = ω2 +(1−e2)ω−e1. The recursive scheme

for determining S̄τ using (4.290) is obtained as

S̄N(τ) = K − Ep(S̄N−1(τ), τ)

− rK

2πi

∫ τ

0

∫ c+i∞

c−i∞

1

ω

(
S̄N−1(τ)

S̄N−1(τ − η)

)−ω
e

1
2
σ2R0(ω)ηdηdω

+
q

2πi

∫ τ

0

∫ c+i∞

c−i∞
(S̄N−1(τ))−ω

(S̄N−1(τ − η))ω+1

ω + 1
e

1
2
σ2R0(ω)ηdηdω

(4.291)

where N = 1, 2, .. and S̄0(τ) = K for every τ . As before, the outer

integral in (4.291) is evaluated using trapezoidal rule and the inner

integral is approximated using an N-point Gauss-Laguerre quadrature

method, The stopping criterion for recursion is ‖S̄N − S̄N−1‖2 ≤ ε.

(iv) The closed-form solution for the price of the American power put option

with non-dividend yield for the case of n = 1 can be obtained by setting

q = 1 in (4.287).
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4.8 The Mellin Transform Method and Bas-

ket Put Options

A natural extension of the univariate Mellin transform exists for higher di-

mensions. The double Mellin transform was first introduced by Reed (1944).

He proved conditions for which the Mellin transform and inverse exist. Basket

options are becoming increasingly widespread in commodity and particularly

energy markets. A basket option gives the holder the right, but not the obli-

gation, to buy or sell a group of underlying assets. The payoff for a basket

call option is given by

Bc =

(
m∑
i=1

αiSi −K

)+

(4.292)

The payoff for a basket put option is given by

Bp =

(
K −

m∑
i=1

αiSi

)+

(4.293)

where αi is the number of shares of asset i in the basket, Si is the price of

asset i in the basket and K is the strike price. Mellin transforms in higher

dimensions will be used to derive expressions for put options on a basket of

multi-dividend paying stocks. Assume that the underlying assets follow ge-

ometric Brownian motion with drift µ1, µ2, ..., µm and volatility σ1, σ2, ..., σm

respectively. So, for i = 1, 2, ..,m,

dSi
Si

= µidt+ σidWi (4.294)

where each Wi is a Brownian motion and dWi are normally distributed ran-

dom variables with mean zero, variance dt and corr(dWi, dWj) = ρij, for
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ρij ∈ [−1, 1] such that
∑

= σρσ . The risk-free drift µi = r − qi − δ2i
2

en-

sures that no-arbitrage condition holds. For multivariate Brownian motion

with drift, say Xt, the characteristic function Φ(u; t) = e−tΨ(u) = E(eiu
′Xt)

is given by the exponent (Manuge (2013)):

Ψ(u) =
1

2
u′
∑

u− i(µ∗)′u

The expression for the integral equation for the price of the European put

Ep(S, t) on a basket of m-stocks S1, S2, ..., Sm by means of the multidimen-

sional Mellin transform was presented in the following result.

Theorem 4.8.1

Let S = (S1, S2, ..., Sm)′ and ω∗ = (ω1, ω2, ..., ωm)′. The generalized Black-

Scholes partial differential equation for the price of the European basket put

option is given by

∂Ep(S, t)

∂t
+

m∑
i=1

(r − qi)Si
∂Ep(S, t)

∂Si

+
1

2

m∑
i,j=1

ρijσiσjSiSj
∂2Ep(S, t)

∂Si∂Sj
− rEp(S, t) = 0 (4.295)

where 0 < S1, S2, ..., Sn <∞, 0 ≤ t ≤ T , with the boundary conditions

Ep(S, T ) = φ(S) =

(
K −

m∑
i=1

Si

)+

(4.296)

lim
S→0

Ep(S, t) = Ke−r(T−t) (4.297)

lim∑n
i=1 Si→∞

Ep(S, t) = 0 (4.298)
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Then, the expression for the integral equation for the price of the European

put option on a basket of multi-dividend paying stocks is obtained as

Ep(S, t) =
1

(2πi)m

∫
γ

φ̃(ω∗)eG(ω∗)
n∏
j=1

S
−ωj
j dωj (4.299)

where γ = ×mj=1γj are strips in Cn defined by γj = {cj + ibj : cj ∈ R, bj =

±∞}.

Proof: Let Ẽp(ω
∗, t) denote the multi-dimensional Mellin transform of Ep(S, t)

which is defined by the relation

Ẽp(ω
∗, t) =

∫
Rn+

Ep(S, t)
m∏
j=1

S
ωj−1
j dSj (4.300)

The functions Ep(S, t) and Ẽp(ω
∗, t) are called a Mellin transform pair. The

multidimensional Mellin transform inversion of (4.300) is given by

Ep(S, t) =
1

(2πi)m

∫
γ

Ẽp(ω
∗, t)

m∏
j=1

S
−ωj
j dωj (4.301)

Thus, to find the multidimensional Mellin transform of the generalized Black-

Scholes equation, applying (4.300) to (4.295) to get

∂Ẽp(ω
∗, t)

∂t
+G(ω∗)Ẽp(ω

∗, t) = 0 (4.302)

where

G(ω∗) =
1

2

m∑
i,j=1

ρijσiσjωiωj −
m∑
i=1

(
(r − qi)−

σ2
i

2

)
ωi − r (4.303)

By means of the final time condition (4.296) and solving (4.302) further yields

Ẽp(ω
∗, t) = φ̃(ω∗)eG(ω∗)(T−t) (4.304)

138



UNIV
ERSIT

Y O
F 

IB
ADAN LI

BRARY

where φ̃(ω∗) is the multidimensional Mellin transform of the final time con-

dition obtained as

φ̃(ω∗) =
Bm(ω∗)K1+

∑n
j=1 ωj∑m

j=1 ωj

(
1 +

∑m
j=1 ωj

) (4.305)

with the multinomial beta function of n-variables

Bn(ω∗) =

∏m
j=1 Γ(ωj)

Γ
(∑m

j=1 ωj

) (4.306)

Taking the multidimensional Mellin transform inversion of (4.304), then the

expression for the integral equation for the price of the European put option

on a basket of multi-dividend paying stocks is obtained as

Ep(S, t) =
1

(2πi)m

∫
γ

φ̃(ω∗)eG(ω∗)(T−t)
n∏
j=1

S
−ωj
j dωj

Hence (4.299) is established.

Remark 4.8.1

(i) For m =1, (4.299) becomes the univariate Mellin-type formula for plain

European put option given by

Ep(S, t) =
1

2πi

∫ c+i∞

c−i∞
φ̃(ω)eG(ω)(T−t)S−ωdω (4.307)

with

φ̃(ω) =
Kω+1

ω(ω + 1)

G(ω) =
1

2
σ2ω2 −

(
(r − q)− σ2

2

)
ω − r


(4.308)
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(ii) For m = 2, (4.299) becomes the integral equation for the price of

European put option on a basket of two-dividend paying stocks via the

double Mellin transform of the form:

Ep(S, t) =
1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
φ̃(ω∗)eG(ω∗)(T−t)

2∏
j=1

S
−ωj
j dωj

(4.309)

with

φ̃(ω∗) =
B2(ω1, ω2)K1+

∑2
j=1 ωj∑2

j=1 ωj(1 +
∑2

j=1 ωj)

G(ω∗) = 1
2

∑2
i,j=1 ρijσiσjωiωj −

∑2
i=1

(
(r − qi)− σ2

i

2

)
ωi − r

S = (S1, S2)′

ω∗ = (ω1, ω2)′


(4.310)

The payoff function for the European basket put option by means of multi-

dimensional Mellin transform was given by the following result.

Theorem 4.8.2

Let the complex variable ω∗ = (ω1, ω2, ..., ωm)′ exist in an appropriate do-

main of convergence in Cn, S be the current price of the underlying asset,

0 ≤ t < T and 0 < K, T,S < ∞. For <(ω∗) > 0, the multidimensional

Mellin transform of the payoff function for the European basket put option

is given by

φ̃(ω∗) =
Bm(ω∗)K1+

∑m
j=1 ωj∑m

j=1 ωj(1 +
∑m

j=1 ωj)
(4.311)
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Proof: Let the multidimensional Mellin transform of the European basket

put payoff function be defined by

φ̃(ω∗) =

∫
Rn+

φ(S)
m∏
j=1

S
ωj−1
j dSj (4.312)

Substituting the final time condition of the European basket put option of

the form

φ(S) =

(
K −

m∑
i=1

Si

)+

into (4.312) yields

φ̃(ω∗) =

∫
Rn+

(
K −

n∑
i=1

Si

)+ m∏
j=1

S
ωj−1
j dSj (4.313)

By simplifying (4.313) further, the multidimensional Mellin transform of the

payoff function for the European basket put option is obtained as

φ̃(ω∗) =

∏m
j=1 Γ(ωj)K

1+
∑m
j=1 ωj

Γ
(

2 +
∑m

j=1 ωj

)
=

Bm(ω∗)K1+
∑m
j=1 ωj∑m

j=1 ωj(1 +
∑m

j=1 ωj)

(4.314)

This completes the proof.

The integral representation for the price of the American put option on a

basket of multi-dividend paying stocks was given by the following result.

Theorem 4.8.3

Let S = (S1, S2, ..., Sm)′ and ω∗ = (ω1, ω2, ..., ωm)′. The generalized non-

homogeneous Black-Scholes-Merton partial differential equation for the price

of the American basket put option is given by

∂Ap(S, t)

∂t
+

m∑
i=1

(r − qi)Si
∂Ap(S, t)

∂Si
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+
1

2

m∑
i,j=1

ρijσiσjSiSj
∂2Ap(S, t)

∂Si∂Sj
− rAp(S, t) = f(S, t) (4.315)

where the early exercise function

f(S, t) =

{
−rK +

∑m
i=1 qiSi, if 0 <

∑m
i=1 Si ≤ S̄

0, if S̄ <
∑m

i=1 Si <∞
(4.316)

The boundary conditions imposed on (4.315) are

Ap(S, t)→ 0 as S→∞ (4.317)

Ap(S, T ) = φ(S) =

(
K −

m∑
j=1

Sj

)+

(4.318)

The smooth pasting conditions along the boundary are

A(S, t)

∣∣∣∣∑m
i=1 Si=S̄

= K − S̄ (4.319)

and

∂A(S, t)

∂Si

∣∣∣∣∣∑m
i=1 Si=S̄

= −1 (4.320)

The integral equation for the price of American basket put option with multi-

dividend paying stocks is obtained as

Ap(S, t) = Ep(S, t)−M−1

(∫ T

t

f̃(ω∗, y)e−(Ψ(ω∗i)+r)(y−t)dy

)
(4.321)

Proof: As of the case of European basket put, the multi-dimensional Mellin

transform of (4.315) yields

∂Ãp(ω
∗, t)

∂t
+G(ω∗)Ãp(ω

∗, t) = f̃(ω∗, t) (4.322)
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where G(ω∗) is given by (4.303) which can be written as

G(ω∗) =
1

2

m∑
i,j=1

ρijσiσjωiωj −
m∑
i=1

(
(r − qi)−

σ2
i

2

)
ωi − r

=
1

2
(ω∗)′Σω∗ + (µ∗)′ω∗ − r

= −(Ψ(ω∗i) + r)

(4.323)

Substituting (4.323) into (4.322) leads to

∂Ãp(ω
∗, t)

∂t
− (Ψ(ω∗i) + r)Ãp(ω

∗, t) = f̃(ω∗, t) (4.324)

where f̃(ω∗, t) is the multidimensional Mellin transform of the early exercise

function

f(S, t) = fa(S, t) + fb(S, t) (4.325)

with

fa(S, t) = −rK

and

fb(S, t) =
m∑
j=1

Sjqj

Therefore,

f̃(ω∗, t) = f̃a(ω
∗, t) + f̃b(ω

∗, t) (4.326)

f̃a(ω
∗, t) =

∫
Rn+

fa(S, t)
m∏
j=1

S
ωj−1
j dSj

= −rK
∫ S̄

0

...

∫ S̄−
∑m−1
j=1 Sj

0

Sωn−1
m

m∏
j=1

S
ωj−1
j dSj

=
−rK

∏m
j=1 Γ(ωj)(S̄)

∑m
j=1 Sj∑m

j=1 SjΓ(
∑m

j=1 Sj)

=
−rKBm(ω∗)(S̄)

∑m
j=1 ωj∑m

j=1 ωj

(4.327)
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where S̄ is the boundary at time t. Similarly,

f̃b(ω
∗, t) =

m∑
k=1

qkωk
Bm(ω∗)(S̄)

∑m
j=1(1+ωj)∑m

j=1 ωj

(∑m
j=1 ωj + 1

) (4.328)

Using (4.327) and (4.328), therefore (4.326) becomes

f̃(ω∗, t) =
−rKBm(ω∗)(S̄)

∑m
j=1 ωj∑m

j=1 ωj
+

m∑
k=1

qkωk
Bm(ω∗)(S̄)

∑m
j=1(1+ωj)∑m

j=1 ωj

(∑m
j=1 ωj + 1

)
(4.329)

By means of (4.329), the final time condition (4.318) and Duhamel’s princi-

ple6 (John (1982)), the general solution of (4.324) is obtained as

Ãp(ω
∗, t) = Ẽp(ω

∗, t)−
∫ T

t

f̃(ω∗, y)e−(Ψ(ω∗i)+r)(y−t)dy (4.330)

Taking the multidimensional Mellin transform of (4.330) leads to (4.321).

This completes the proof.

Remark 4.8.2

(i) Note that, the first term in (4.321) is the price of the European basket

put option.

(ii) By applying the value-matching condition (4.319) to (4.321), the value

of S̄ can be determined as a solution of the integral equation derived:

K − S̄ =
1

(2πi)m

∫
γ

φ̃(ω∗)eG(ω∗)
m∏
j=1

S̄
−ωj
j dωj

− 1

(2πi)m

∫
γ

(∫ T

t

f̃(ω∗, y)e−(Ψ(ω∗i)+r)(y−t)dy

) m∏
j=1

S̄
−ωj
j dωj

(4.331)

6It reduced the problem of solving the American case to instead of solving the European
case under different boundary conditions
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with

f̃(ω∗, y) =
−rKBm(ω∗)(S̄y)

∑m
j=1 ωj∑m

j=1 ωj
+

m∑
k=1

qkωk
Bm(ω∗)(S̄y)

∑m
j=1(1+ωj)∑m

j=1 ωj

(∑m
j=1 ωj + 1

)
(4.332)

(iii) Setting the free boundary to zero, (4.321) reduced to (4.299).

The closed-form solution for the price of the American basket put option was

given by the following result.

Theorem 4.8.4

Let τ = T−t, S = (S1, S2, ..., Sm)′, ω∗ = (ω1, ω2, ..., ωm)′ and 0 < K, T, Sj, qj <

∞ for all 1 ≤ j ≤ m. For Lipschitz payoff φ(S), the integral equation for the

price of American basket put option with multi-dividend paying stocks given

by

Ap(S, t) = Ep(S, t)−M−1

(∫ T

t

f̃(ω∗, y)e−(Ψ(ω∗i)+r)(y−t)dy

)
(4.333)

reduces to the approximation given by

Ap(S, τ) ' (−1)
∑
k∆b

(2πi)m
FFT (γςE)e−rτ−c

′yk

+
(−1)

∑
k∆b∆τ

(2πi)m
FFT

(
M−1∑
l=0

γςeepe−r(τ−tl)

)
e−c

′yk

(4.334)
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Proof: From (4.333), write that

Ap(S, t) =
1

(2πi)m

∫
γ

φ̃(ω∗)e−(Ψ(ω∗i)+r))(T−t)
m∏
j=1

S
−ωj
j dωj

−M−1

(∫ T

t

f̃(ω∗, y)e−(Ψ(ω∗j)+r)(y−t)dy

)
=

1

(2πi)m

∫
γ

φ̃(ω∗)e−(Ψ(ω∗i)+r))(T−t)
m∏
j=1

S
−ωj
j dωj

− 1

(2πi)m

∫
γ

(∫ T

t

f̃(ω∗, y)e−(Ψ(ω∗i)+r)(y−t)dy

) m∏
j=1

S
−ωj
j dωj

=
1

(2πi)m

∫
γ

e−r(T−t)φ̃(ω∗)Φ(ω∗i, T − t)
m∏
j=1

S
−ωj
j dωj

− 1

(2πi)m

∫
γ

(∫ T

t

f̃(ω∗, y)Φ(ω∗i, y − t)
)
e−r(y−t)

m∏
j=1

S
−ωj
j dydωj

(4.335)

Setting τ = T − t, (4.335) yields

Ap(S, τ) =
1

(2πi)m
lim
b→∞

∫ c+ib

c−ib
e−rτ φ̃(ω∗)Φ(ω∗i, τ)S−ω

∗
dω∗

+
1

(2πi)m
lim
b→∞

∫ c+ib

c−ib

(∫ τ

0

f̃(ω∗, y)Φ(ω∗i, τ − y)

)
e−r(τ−y)S−ω

∗
dydω∗

(4.336)

where Φ(.) is the characteristic function of a multivariate Brownian motion

with drift. By means of change of variables ω∗ = c + ib, dω∗ = idb. Then,
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(4.336) yields

Ap(S, τ) =
1

(2π)m
lim
b→∞

∫ b

−b
e−rτ φ̃(c + ib)Φ(ci− b, τ)S−(c+ib)db

+
1

(2π)m
lim
b→∞

∫ b

−b

∫ τ

0

f̃(c + ib, y)Φ(ci− b, τ − y)e−r(τ−y)S−(c+ib)dydb

=
1

(2π)m
lim
b→∞

∫ b

−b
e−rτ φ̃(c + ib)Φ(ci− b, τ)e−(c+ib)′ ln(S)db

+
1

(2π)m
lim
b→∞

∫ b

−b

∫ τ

0

f̃(c + ib, y)Φ(ci− b, τ − y)e−r(τ−y)e−(c+ib)′ ln(S)dydb

(4.337)

Discretizing the integrals over b and y and by means of Trapezoidal rule,

(4.337) becomes

Ap(S, τ) ' ∆be
−rτ

(2π)m

N−1∑
j1,...,jm=0

φ̃(c + ibj)Φ(ci− bj, τ)I

+
∆b∆τ

(2π)m

N−1∑
j1,...,jm=0

M−1∑
l=0

f̃(c + ibj)Φ(ci− bj, τ − tl)e−r(τ−tl)I (4.338)

where

I = e−c
′ ln(S)−ib′j ln(S) (4.339)

tl = 0, ...,M − 1 by step-size h = L
M−1

, ∆τ = h
2
, bj = (bj1 , ..., bjm), bji =(

ji − N
2

)
∆i for ji = 0, ..., N − 1 and ∆b =

∏n
i=1 ∆i. Note that, the grid of

each sum in ji is bounded by N . Next, the use of the Fast Fourier Transform

(FFT) will be considered as follows. Let the reciprocal lattice for the log

initial prices be defined as

ln(S) = yk = (yk1 , ..., ykn) (4.340)
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where

yki =

(
ki −

N

2

)
λi (4.341)

Therefore, the multiple sum over the lattice is used for the approximation of

the multiple integral.

B = {bj = (bj1 , ..., bjn)|j = (j1, ..., jn) ∈ {0, ..., N − 1}m} (4.342)

For FFT to produce an acceptable error, the lattice spacing ∆i and the

number of points on the lattice must be carefully chosen. The reciprocal

lattice S and the value of the strike price K for computation are log-prices

S = {yj = (yj1 , ..., yjn)|k = (k1, ..., kn) ∈ {0, ..., N − 1}m} (4.343)

By choosing,

∆i =
2π

Nλi
(4.344)

Equation (4.338) becomes

Ap(S, t) '
(−1)

∑
k∆be

−rτ

(2π)m

N−1∑
j1,...,jm

ςee−c
′yke−

−2πij′k
N

+
(−1)

∑
k∆be

−rτ

(2π)m

N−1∑
j1,...,jm

M−1∑
l=0

ςeepe−r(τ−tl)−c
′yke−

−2πij′k
N

(4.345)

where

ςe(j) = (−1)
∑

jφ̃(c + ibj)Φ(ci− bj, τ) (4.346)

and

ςepp(j, tl) = (−1)
∑

jf̃(c + ibj, τ − tl)Φ(ci− bj, tl) (4.347)
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To compute the value of American basket put option, two FFT procedures

must be computed with input arrays ςe(j) and ςepp(j, tl). Introducing the

composite Simpson’s rule allows the integrand to be approximated using

quadratic polynomials rather than line segments. The price of American

basket put option is obtained as

Ap(S, t) '
(−1)

∑
k∆b

(2π)m
FFT (γςe)e−rτ−c

′yk

+
(−1)

∑
k∆b∆τ

(2π)m
FFT

(
M−1∑
l=0

γςeepe−r(τ−tl)

)
e−c

′yk

(4.348)

where

γ =
(3 + (−1)1+

∑
j − δ∑ j)

3
(4.349)

with

δ∑ j =

{
1, if

∑
j = 0

0, otherwise

Hence, (4.334) is established.

Remark 4.8.3

(i) Equation (4.348) is the valuation formula for the price of American

basket put option.

(iii) Equation (4.334) computes an N×N matrix of option prices at varying

initial asset prices.

(iv) The number of matrix corresponds to the number of underlying assets

of the option.
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(v) By means of the multidimensional Mellin transform method, the price

of the European basket put option on a basket of multi-dividend yields

can be approximated as

Ep(S, τ) ' (−1)
∑
k∆b

(2π)m
FFT (γςe)e−rτ−c

′yk (4.350)

4.8.1 Greeks

In financial mathematics, option sensitivities also known as Greeks de-

scribe the relationship between the value of an option and changes in one

of its underlying parameters. They are easily obtained for plain vanilla put

option with dividend paying stocks. Setting τ = T − t, the integral represen-

tation for the price of the European basket put option with multi-dividend

paying stocks in (4.299) can be written as

Ep(S, τ) = e−rτM−1(φ̃(ω∗)Φ(ω∗i, τ)) (4.351)

By inducing appropriate derivative operator on the complex integral in (4.351)

and using the procedures of Manuge and Kim (2014) for the case of Ameri-

can basket put, the following Greeks for the European basket put option was

obtained as follows:

(i) Delta, the rate of change between the option’s price and the underlying

asset price is given by

∆1 =
∂Ep(S, τ)

∂Si
= −e−rτM−1

(
ωi
Si
φ̃(ω∗)Φ(ω∗i, τ)

)
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Similarly, the cross partial derivative with respect to two independent

assets is given by

∆2 =
∂2Ep(S, τ)

∂Si∂Sj
= −e−rτM−1

(
ωi
Si

ωi
Sj
φ̃(ω∗)Φ(ω∗i, τ)

)

(ii) Gamma, the second derivative of the value function with respect to the

underlying asset price is given by

Γ =
∂2Ep(S, τ)

∂S2
i

= e−rτM−1(ωi(1− ωi)φ̃(ω∗)Φ(ω∗i, τ)S−2
i )

(iii) Theta, the rate of change between an option portfolio and time, or time

sensitivity is given by

Θ = −∂Ep(S, τ)

∂τ
= e−rτM−1(φ̃(ω∗)(Ψ(ω∗i) + r)Φ(ω∗i, τ))

(iv) Rho, the derivative of the option value with respect to the risk-free

interest rate is given by

ρ =
∂Ep(S, τ)

∂r
= −τe−rτM−1

(
m∑
j=1

(ωj − 1)τ φ̃(ω∗)Φ(ω∗i, τ)

)

(v) Vega, the first derivative with respect to volatility is given by

ν =
∂Ep(S, τ)

∂σi
= τe−rτM−1

((
1

2

m∑
i,j=1

ρi,jσjωiωj)

)
φ̃(ω∗)Φ(ω∗i, τ)

)

+ τe−rτM−1

((
m∑
i=1

σiωi(ωi − 1)

)
φ̃(ω∗)Φ(ω∗i, τ)

)
, i 6= j
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4.9 Other Related Methods for Options Val-

uation

4.9.1 Double Transform Method for the Valuation of
Asian Option

A simple expression for the double transform by means of Fourier and Laplace

transforms, (with respect to the logarithm of the strike and time to matu-

rity, respectively) of the price of continuously monitored Asian options was

obtained. The double transform is expressed in terms of Gamma functions

only. The computation of the price requires a multivariate numerical inver-

sion. The following result showed how double transform can be used for the

valuation of Asian option.

Theorem 4.9.1

The double transform for the price of Asian option c(k, h; af ) for λ > 2γ(γ+v)

is obtained as

L(F(c(k, h; af ); k → γ);h→ λ)) = C(γ + iaf , λ) (4.352)

where

C(γ + iaf , λ) =
4Γ(i(γ + iaf ))Γ(µ+ν

2
+ 1)Γ(µ−ν

2
− 1− i(γ + iaf ))

σ2λ2(1+i(γ+iaf ))Γ(µ+ν
2

+ 2 + i(γ + iaf ))Γ(µ−ν
2

)

where Γ(.) is the gamma function of complex argument and µ2 = 2λ+ ν2.

Proof: To price Asian option, compute a double transform with respect

to time to expiry and logarithm of the strike. Begin with the assumption

that the risk-neutral process for the underlying asset is given by a stochastic
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differential equation.

dSt = rStdt+ σStdWt (4.353)

where Wt is a Brownian motion or wiener process, r is the risk-free interest

rate, t is the time and σ is the volatility. Under this condition, in order to

price continuously monitored Asian option, the probability density function

of the random variable S will be needed, that is

At =

∫ t

0

exp

((
r − σ2

2

)
s+ σWs

)
ds (4.354)

The payoff of a fixed strike Asian option is given by

PA = max

(
S0At
t
−K, 0

)
(4.355)

The case of floating strike Asian options is characterized by a payoff

max
(
S0At
t
− St, 0

)
. The presence of a continuous dividend yield q can be

taken into account in order to replace r by r−q and the spot price by S0e
−qt.

If the risk-free interest rate or volatility is not constant, then the pricing of

the Asian option becomes more difficult. The price of the Asian option can

be obtained by computing the discounted expected value:

e−rtE0 max

(
S0At
t
−K, 0

)
= e−rt

S0

t
E0 max(At − J, 0) (4.356)

where E0 is the expected value under the risk-neutral probability measure

and J = (K
S0

)t. In order to compute this expectation, let At be expressed as

At =
4

σ2
D

(v)
h (4.357)
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where

D
(v)
h =

∫ h

0

e2(Ws+vs)ds (4.358)

h = σ2t
4

and v = 2r
σ2−1

. Thus

E0(At − J)+ = E0 max

(
4

σ2
D

(v)
h − J, 0

)
=

4

σ2
E0 max

(
D

(v)
h − J0, 0

)
=

4

σ2

∫ ∞
J0

(x− J0)fD(x, h)dx

(4.359)

where fD is the density function of the random variable D
(v)
h and J = 4J0

σ2 .

After a final change of variable, w = lnx, define a function of the form:

c(k, h) =
4

σ2

∫ ∞
k

(ew − ek)flnD(w, h)dw (4.360)

where k = ln J0. Using the fact that the density law of the logarithm of a

random variable is related to the density of the same random variable by the

relation:

flnD = fD(eω, h)eω,−∞ < ω <∞ (4.361)

Compute the analytical expression of the double transform c(k, h) for Laplace

and Fourier with respect to h and k respectively. Following Fu et al. (1999),

multiplying (4.360) by an exponentially decaying function e−afk, c(k, h) be-

comes square integrable in k over the negative axis. Therefore, replacing

the function c(k, h) with c(k, h; af ), where c(k, h; af ) ≡ c(k, h)e−afk, af > 0.

Therefore,

L(F(c(k, h; af ); k → γ);h→ λ)) =

∫ ∞
0

e−λh
∫ ∞
−∞

eiγkc(k, h; af )dkdh

(4.362)
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Solving (4.362) further, the double transform of c(k, h; af ) is obtained as

L(F(c(k, h; af ); k → γ);h→ λ) = C(γ + iaf , λ)

This completes the proof.

The double numerical inversion for the price of Asian option was given by

the following result.

Theorem 4.9.2

The double numerical inversion for the price of Asian option is given by

c(k, h) ≈ e0.5(gf+gp)

4kh

∞∑
m=−∞

(−1)m

(
∞∑

s=−∞

(−1)sC

(
sπ

k
+
igf
2k
, a+

isπ

h

))
(4.363)

Proof: To obtain the function c(k, h) by the double numerical inversion,

begin with the price of the Asian option given by

e−rtE0 max

(
S0At
t
−K, 0

)
= e−rt

S0

t
eafkc(k, h; af )

∣∣∣∣∣
k=ln(Kσ

2t
4

),h=σ2t
4

(4.364)

The numerical Inversion of the double transform in (4.352) can be performed

as follows:

Given the transform C(γ, λ), the Fourier inverse can be computed with re-

spect to γ numerically. Then invert the Laplace transform with respect to λ

by using the numerical univariate inversion formula. Let L−1(.) and F−1(.)

denote respectively the Laplace and Fourier inverses, then the price of Asian

option denoted by c(k, h) gives;

c(k, h) = eafkL−1(F−1(C(γ + iaf , λ); γ → k);λ→ h) (4.365)
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Also c(k, h) can be defined as

c(k, h) := eafkL−1(F−1(C(γ + iaf , λ))) (4.366)

Using the the definition of the univariate Fourier inversion formula, (4.366)

leads to a relation

c(k, h) = eafkL−1

(
1

2π

∫ ∞
−∞

e−iγkC(γ + iaf , λ)dγ

)
(4.367)

Discretizing the inversion integral by a step size ∆f , to get

c(k, h) = eafkL−1

(
∆f

2π

∞∑
s=−∞

e−i∆f skC(∆fs+ iaf , λ)

)
(4.368)

Setting ∆f = π
k

and af =
gf
2k

, then

c(k, h) = e0.5gfL−1

(
1

2k

∞∑
s=−∞

(−1)sC

(
sπ

k
+
igf
2k
, λ

))
(4.369)

Taking the Laplace inversion of (4.369) yields

c(k, h) =
e0.5gf

2πi

∫ ap+i∞

ap−i∞

(
1

2k

∞∑
s=−∞

(−1)sC

(
sπ

k
+
igf
2k
, λ

))
eλhdλ (4.370)

Setting

λ = ap + iw ⇒ dλ = idw (4.371)

where ap is at the right of the largest singularity of the function C(γ, λ). By

means of (4.371), (4.370) becomes

c(k, h) =
e0.5gf+aph

4πk

∫ ∞
−∞

eiw

(
∞∑

s=−∞

(−1)sC

(
sπ

k
+
igf
2k
, ap + iw

))
dw

(4.372)
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Equation (4.372) can be approximated again using the trapezoidal rule with

step size ∆p = π
h

and by setting ap = gp
2h

, (4.363) is established.

Remark 4.9.1

(i) The parameters af and ap control the discretization error and must be

carefully chosen.

(ii) The numerical inversion of the double transform of (4.352) can be per-

formed by resorting to the multivariate version of the Fourier Euler

algorithm since it gives a much faster convergence for infinite sums

(Abate and Whitt (1992), Choudhury et al. (1994)). Specifically, the

Euler sum provides an estimate E(m,n) of the series

∞∑
s=1

(−1)sas

with

E(m,n) =
n−1∑
j=0

(
j
n

)
2−nSm+j (4.373)

and

Si =
n−1∑
j=0

(−1)jaj (4.374)

The use of the Euler algorithm requires (m+n) evaluation of the com-

plex function aj. In particular, Fourier and Laplace inversions require

(mf + nf )(mp + np) evaluations of the double transform. The com-

putational cost of the inversion is directly related to this product. In

order to avoid numerical difficulties in the computation of the binomial
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coefficient in the Euler algorithm, let

nf = mf + 15 (4.375)

np = mp + 15 (4.376)

where the choice of mf and mp has to be tuned according to the volatil-

ity level.

(iii) After some algebra, the delta of the Asian option becomes

∆(S0, K, t, r, σ) = e−rt
∂

∂S0

(E0 max(At − J, 0))

=
e−rt

t

(
c(k, h)− ∂c(k, h)

∂k

) ∣∣∣∣∣
k=ln(Kσ

2t
4S0

),h=σ2t
4

(4.377)

Also the gamma of the Asian option is obtained as

Γ(S0, K, t, r, σ) = e−rt
∂2

∂S2
0

(E0 max(At − J, 0))

=
e−rt

S0t

(
∂c(k, h)

∂k
− ∂2c(k, h)

∂k2

) ∣∣∣∣∣
k=ln(Kσ

2t
4S0

),h=σ2t
4

(4.378)

4.9.2 Application of the Fourier Transform Method in
the Valuation of European Call Option

The Fourier pricing techniques and Fourier inversion methods for density

calculations add a versatile tool to the set of advanced techniques for pricing

and management of financial derivatives. Stein and Stein (1991) and Heston

(1993) started the ball rolling with their use of Fourier transforms in finance

to analytically value European options on stocks with stochastic volatility.

158



UNIV
ERSIT

Y O
F 

IB
ADAN LI

BRARY

The fast Fourier transform method is a numerical approach for pricing op-

tions which utilizes the characteristic function of the underlying instruments

price process. This approach was introduced by Carr and Madan (1999).

The Fast Fourier transform method assumes that the characteristic function

of the log-price is given analytically. Consider the valuation of European

call option. Let the risk-neutral density of s = logST be f(s), where ST is

the underlying asset price at time to expiry/maturity T . The characteristics

function of the density is given by

ϕT (v) :=

∫ ∞
−∞

eivsf(s)ds (4.379)

The price of a European call option under the risk-neutral valuation with

maturity T and strike price K denoted by CT (p) is given by

CT (p) = e−rtE[(ST −K)+]

= e−rTE[(es −K)+]

=

∫ ∞
−∞

e−rT (es −K)+f(s)ds

=

∫ ∞
−∞

e−rT (es −K)f(s)ds

(4.380)

where p is the logarithm of the strike price K. That is

p ≡ logeK ⇒ K ≡ ep (4.381)

Substituting (4.381) into (4.380) yields

CT (p) =

∫ ∞
p

e−rT (es − ep)f(s)ds (4.382)
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in which the expectation is taken with respect to some risk-neutral measure.

Since,

lim
K→∞

CT (K) = lim
K→∞

CT (ep) = S0 (4.383)

The integral representation given by (4.382) is not square integrable. There-

fore, CT (ep) 6∈ L1 as CT (ep) does not tend to zero for p → −∞. Consider a

modified version of the call price in (4.382) given by

cT (p) ≡ eapCT (p), a > 0 (4.384)

Equation (4.384) is square integrable in p over the entire real line. Using

(3.54) and (3.55), then

F(cT (v)) = c̃T (v) =

∫ ∞
−∞

eivpcT (p)dp (4.385)

and

cT (v) =
1

2π

∫ ∞
−∞

eivpc̃T (p)dp (4.386)

Substituting (4.384) into (4.383) leads to a new call value in the Fourier

transform domain as

c̃T (v) =

∫ ∞
−∞

eivpeapCT (p)dp (4.387)

Using (4.382) and (4.387) leads to a relation

c̃T (v) =

∫ ∞
−∞

eivpeap
∫ ∞
p

e−rT (es − ep)f(s)dsdp

=

∫ ∞
−∞

e−rTf(s)

∫ ∞
p

eivpeap(es − ep)dsdp
(4.388)
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Solving (4.388) further yields

c̃T (v) =

∫ ∞
−∞

e−rTf(s)

∫ ∞
p

eivp(es+ap − ep+ap)dsdp

=

∫ ∞
−∞

e−rTf(s)

(
e(a+1+iv)s

a+ iv
− e(a+1+iv)s

a+ 1 + iv

)
ds

Since for a > 0,

lim
p→−∞

|e(iv+a)p| = lim
p→−∞

|e(iv+1+a)p| = lim
p→−∞

|e(1+a)p| = 0

Therefore,

c̃T (v) =
e−rTϕT (v − (a+ 1)i)

a2 + a− v2 + i(2a+ 1)v
(4.389)

where ϕT is the characteristic function of the logST given by (4.379). Now,

the desired option price in terms of c̃T (v) can be obtained using the Fourier

inversion of the form:

CT (p) =
e−ap

2π

∫ ∞
−∞
<(e−ivpc̃T (v))dv

=
e−ap

π

∫ ∞
0

<(e−ivpc̃T (v))dv

(4.390)

Substituting (4.389) into (4.390) yields

CT (p) =
e−ap

π

∫ ∞
0

<
(
e−ivp

e−rTϕT (v − (a+ 1)i)

a2 + a− v2 + i(2a+ 1)v

)
dv (4.391)

By recognizing that the call price is real (even in real part, odd in imaginary).

Due to the condition a, (4.391) is well defined. After discretizing and using

the Simpson’s 1
3

rule, (4.391) can be computed numerically by means of the

fast Fourier transform as

CT (pu) '
e−apu

π

N∑
j=1

e(
−2πi(j−i)(u−1)

N
+ibvj)c̃T (vj)

η

3
[3 + (−1)j − δj−1] (4.392)
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with vj = η(j − 1), pu = −b + λ(u − 1), b = Nλ
2
, λ = 2π

ηN
and δj−1 is the

Kronecker delta function defined as

δj−1 =

{
1 if j = 1

0 otherwise

where parameters η and N determine the fineness and size of the grid, thus

defining the upper limit of integration.

Remark 4.9.2

(i) A sufficient condition for cT (p) to be square integrable is given by c̃T (0)

being finite.This is equivalent to EQ(Sa+1
T ) < ∞. Carr and Madan

(1999) established that if the integrability parameter a = 0, the de-

nominator of (4.389) vanishes when p = 0, including a singularity in

the integrand. Since the fast Fourier transform evaluates the integrand

at p = 0, the use of the factor eap is required.

(ii) The prices of vanilla puts can be obtained by means of put-call parity

(3.77). However, one can easily obtain the price PT (K) of a vanilla put

by Carr-Madan inversion by choosing negative value for a.

A sufficient condition for the call value cT (p) in the Fourier domain to be

square integrable was presented in the following result.

Lemma 4.9.1

Let a > 0. The Fourier transform of cT (p) exists if ESa+1
T <∞.
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Proof: First note that ESa+1
T <∞⇒ cT (0) <∞, since

c̃T (0) =
e−rT |ϕT (−(a+1)i)|

a2 + a

=
e−rTESa+1

T

a2 + a

(4.393)

where (4.393) follows from

ESa+1
T = |ϕT (−(a+ 1)i)|

=
∣∣Ee(−(a+1)i)i logST

∣∣
=
∣∣Ee(a+1) logST

∣∣
(4.394)

Also it follows from (4.385) that

c̃T (0) =

∫ ∞
−∞

cT (p)dp (4.395)

Combining this with c̃T (0) <∞ completes the proof.

Remark 4.9.3

(i) The dynamics of the stock price St in a risk-free Black-Scholes world

follows geometric Brownian motion with a non-dividend yield is of the

form

dSt = rStdt+ σStdWt, 0 < St <∞

Utilizing the Itô’s formula, ST can be solved explicitly as:

ST = e((r−0.5σ2)T+logS0+σWT )

from which ST is lognormally distributed. Hence for the characteristic

function ϕT (u) of logST leads to a relation

ϕT (u) = ei((r−0.5σ2)T+logS0)u−0.5σ2Tu2
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(ii) For the Black-Scholes model, the integrand in (4.391) reduces to

BSint =
exp(−0.5σ2Tv2 + 0.5a2σ2T + as+ aTr + 0.5σ2Ta+ s)

a4 + 2a3 + 2a2v2 + a2 + 2av2 + v4 + v2
g(a, p, r, s, σ, T, v)

(4.396)

where

g(a, p, r, s, σ, T, v) = (a2 + a− v2) cos((p− (σ2aT + s+ rT + 0.5σ2T ))v)

− v(2a+ 1) sin((p− (σ2aT + s+ rT + 0.5σ2T ))v)

(4.397)

From (4.397), more fluctuating integrand can be obtained by increas-

ing any of the parameters σ, T, a, s and r. The magnitudes of these

fluctuations get larger which can be seen from the exponential term

in (4.396). Pictures can be of help in understanding these observa-

tions. The most striking observations are visualized next. Unless stated

otherwise, the following plots are generated based on the parameters

S = 100, K = 100, T = 1, σ = 0.4, r = 0.05, a = 3.5. In fact, for practi-

cal ranges of the above parameters only (the interplay of T, S
K

and a)

have noticeable influences on the integrand. The influence of T on the

Black-Scholes integrand is shown in Figure 4.1. As anticipated, more

fluctuations and larger functional values are obtained.
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Figure 4.1: The influence of T on the Black-Scholes integrand. Lower: T=10,
Upper: T=1.
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(iii) The strike p appears solely in the sine and cosine terms in (4.397).

Since K → 0⇔ p→ −∞. It is observed that both the cosine and sine

terms will fluctuate rapidly as K → 0. This will cause the integrand

to be extremely oscillatory, while the absolute values do not grow in

magnitude. Nonetheless, this is sufficient to pose a huge problem from a

quadrature point of view. The same is true when K →∞. This latter

case is of less practical interest however. In fact, it is the so-called

moneyness S
K

that determines the oscillatory nature of the integrand.

The influence of K on the Black-Scholes integrand is shown in Figure

4.2.
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Figure 4.2: The influence of K on the Black-Scholes integrand. Lower:
K=1000, Middle: K = 100, Upper: K=1.
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(iv) At this point it is unavoidable to comment on the choice of the integra-

bility parameter a. A small value of a is favourable since this reduces

both the oscillations and the magnitudes hereof. However choosing a

too small can turn the integrand into a sort of impulse function, which

is not tractable at all from a numerical integration point of view. This

follows from the fact that in the origin v = 0 , the Black-Scholes inte-

grand in (4.396) becomes

BSint =
exp(0.5a2σ2T + as+ aTr + 0.5σ2Ta+ s)

a(a+ 1)
(4.398)

Taking the limit of (4.398) as a→ 0 yields

lim
a→0

(BSint) =∞ (4.399)

Similarly, (4.398) tends to ∞ as a→∞

lim
a→∞

(BSint) =∞ (4.400)

On the other hand, for v > 0 and by letting a → 0, the integrand

(4.396) becomes

lim
a→0

(BSint) =
exp(−0.5σ2Tv2 + s)(−v2 cos((p−m0)v)− v sin((p−m0))v)

v4 + v2

(4.401)

with

m0 = σ2aT + s+ Tr + 0.5σ2T

Equation (4.401) decreases very fast as a function of v because of the

exponential term (ManWo Ng (2005)). The Black-Scholes integrand
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resembles more of the impulse function as shown in Figure 4.3 below.

For the integrand depicted, consider S = 100, K = 100, T = 1,

σ = 0.4, r = 0.05.
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Figure 4.3: The Black-Scholes integrand resembles more of the impulse func-
tion as a→ 0.
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(v) In order to determine a good value for a; it is proposed to (numerically)

minimize the maximum of the integrand, that is to solve the following

optimization problem:

min
a>0

(
exp(0.5a2σ2 + as+ aTr + σ2Tr + s)

a(a+ 1)

)
which intuitively would yield a nice integrand in the sense that both

variations in function values as well as oscillations are reduced. Note

that in this strategy the dependence of a on k have been discarded.

The flavour of the function to be minimized is shown in the Figure 4.4,

where r = 0.05, T = 1, σ = 0.15, S = 100. One possible way to solve

the optimization problem is “setting the derivative to zero” (ManWo

Ng (2005)).
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Figure 4.4: A typical function one has to face when the maximum of the
Black-Scholes integrand is to be minimized.
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The following result showed how the Black-Scholes integrand attained its

maximum at v = 0.

Lemma 4.9.2

Let v ≥ 0. The Black-Scholes integrand given by

BSint = <
(
e−ivp

e−rTϕT (v − (a+ 1)i)

a2 + a− v2 + i(2a+ 1)v

)
(4.402)

attains its maximum at v = 0, where ϕT (v) = ei((r−0.5σ2)T+logS0)v−0.5σ2Tv2

Proof: From (4.398), it is clearly seen that the statement is equivalent with

<(e−ivpc̃T (v)) ≤ exp(0.5a2σ2T + as+ aTr + 0.5σ2Ta+ s)

a(a+ 1)
, for v ≥ 0

(4.403)

This follows since

|<(e−ivpc̃T (v))| ≤ |e−ivpc̃T (v)| = c̃T (v) (4.404)

where

|c̃T (v)| =
∣∣∣∣ e−rTϕT (v − (a+ 1)i)

a2 + a− v2 + i(2a+ 1)v

∣∣∣∣ (4.405)

Thus,

|ϕT (v − (a+ 1)i)| = |ei(s+(r−0.5σ2)T )(v−(a+1)i)−0.5σ2T (v−(a+1)i)2|

= e(0.5a2σ2T+as+aTr+0.5σ2Ta+s+rT−0.5σ2Tv)
(4.406)

Substituting (4.406) into (4.405) yields

|c̃T (v)| = exp(0.5a2σ2T + as+ aTr + 0.5σ2Ta+ s− 0.5σ2Tv)

|a2 + a− v2 + i(2a+ 1)v|

≤ exp(0.5a2σ2T + as+ aTr + 0.5σ2Ta+ s− 0.5σ2Tv)

|(v − (a+ 1)i)||(v − ai)|

≤ exp(0.5a2σ2T + as+ aTr + 0.5σ2Ta+ s)

a(a+ 1)

This completes the proof.

173



UNIV
ERSIT

Y O
F 

IB
ADAN LI

BRARY

4.9.3 Binomial Model for the Valuation of European
Call Option

Binomial model is an iterative solution that models the price evolution

over the whole option validity period. The binomial option-pricing model is

based on the assumption of no arbitrage. The assumption of no arbitrage

implies that all risk-free investments earn the risk-free rate of return. For

some types of options such as the American options, using an iterative model

is the only choice since there is no known closed form solution that predicts

price over time. Black-Scholes model seems dominated the option pricing, but

it is not the only popular model, the Cox-Ross-Rubinstein (CRR) “Binomial”

model has a large popularity. The binomial model was first suggested by Cox

et al. (1979) in paper “Option Pricing: A Simplified Approach” and assumed

that stock price movements are composed of a large number of small binomial

movements. The stock and option prices in a general one-step and general

two-step trees for binomial model are shown in Figures 4.5 and 4.6 below.
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Figure 4.5: Stock and option prices in a general one-step tree.
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Figure 4.6: Stock and option prices in a general two-step tree.
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The following result showed the CRR model for the valuation of European

call option.

Theorem 4.9.3

The probability of at least m success in N independent trials, each resulting

in a success with probability p and in a failure with probability q is given by

Φ(m;N, p) =
N∑
j=m

(
N
j

)
pj(1− p)N−j (4.407)

Let p̂ = R−1pu and q̂ = R−1(1− p)d, then the CRR model for the valuation

of European call option is obtained as

f = S0Φ(m;N, p̂)−Ke−rTΦ(m;N, p) (4.408)

Proof: After one time period, the stock price can move up to S0u with

probability p or down to S0d with probability (1− p) as shown in the Figure

4.5. Therefore the corresponding value of the European call option at the

first time movement δt is given by

fu = max(S0u−K, 0) (4.409)

fd = max(S0d−K, 0) (4.410)

where fu and fd are the values of the call option after upward and downward

movements respectively. The risk neutral call option price at the present

time is

f = e−rδt[pfu + (1− p)fd] (4.411)
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where the risk neutral probability is given by

p =
erδt − d
u− d

(4.412)

with

u = eσ
√
δt (4.413)

d = e−σ
√
δt (4.414)

Now, extend the binomial model to two periods. Let fuu denote the call

value at time 2δt for two consecutive upward stock movements, fud for one

downward and one upward movement and fdd for two consecutive downward

movements of the stock price as shown in the Figure 4.6. Then,

fuu = max(S0uu−K, 0) (4.415)

fud = max(S0ud−K, 0) (4.416)

fdd = max(S0dd−K, 0) (4.417)

The values of the European call options at time δt are

fu = e−rδt[pfuu + (1− p)fud] (4.418)

fd = e−rδt[pfud + (1− p)fdd] (4.419)

Substituting (4.418) and (4.419) into (4.411) leads to

f = e−2rδt
[
p2fuu + 2p(1− p)fud + (1− p)2fdd

]
(4.420)

Equation (4.420) is called the current European call value using time 2δt,

where the numbers p2, 2p(1−p) and (1−p)2 are the risk neutral probabilities
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that the underlying asset prices S0uu, S0ud and S0dd respectively attained.

The result in (4.420) can be generalized to value an option at T = Nδt as

f = e−Nrδt
N∑
j=0

(
N
j

)
pj(1− p)N−jfujdN−j (4.421)

where

fujdN−j = max(S0u
jdN−j −K, 0) (4.422)

and (
N
j

)
=

N !

(N − j)!j!
(4.423)

is the binomial coefficient. Therefore,

f = e−Nrδt
N∑
j=0

(
N
j

)
pj(1− p)N−j max(S0u

jdN−j −K, 0) (4.424)

Assume that m is the smallest integer for which the option’s intrinsic value

in (4.424) is greater than zero. This implies that S0u
mdN−m ≥ K. Equation

(4.424) can be written as

f = S0e
−Nrδt

N∑
j=m

(
N
j

)
pj(1− p)N−jujdN−j

−Ke−Nrδt
N∑
j=m

(
N
j

)
pj(1− p)N−j

(4.425)

which gives the present value of the call option. The term e−Nrδt is the dis-

counting factor that reduces f to its present value. The first term
(
N
j

)
pj (1− p)N−j

is the binomial probability of jth upward movements to occur after the first

N trading periods and S0u
jdN−j is the corresponding value of the asset after
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jth upward move of the stock price. The second term is the present value of

the option’s strike price. Setting R = erδt in the first term in (4.425) to get

f = S0R
−N

N∑
j=m

(
N
j

)
pj(1− p)N−jujdN−j −Ke−Nrδt

N∑
j=m

(
N
j

)
pj(1− p)N−j

= S0

∑
j=m

(
N
j

) [
R−1pu

]j [
R−1(1− p)d

]N−j
−Ke−Nrδt

N∑
j=m

(
N
j

)
pj(1− p)N−j

(4.426)

Now, let Φ(m;N, p) be the binomial distribution function. That is

Φ(m;N, p) =
N∑
j=m

(
N
j

)
pj(1− p)N−j (4.427)

Equation (4.427) is the probability of at least m success in N independent

trials, each resulting in a success with probability p and in a failure with

probability (1− p). Then, letting p̂ = R−1pu, it is clearly seen that R−1(1−

p)d = 1− p̂. Consequently it follows from (4.426) that

f = S0Φ(m;N, p̂)−Ke−rNTΦ(m;N, p)

This completes the proof.

Remark 4.9.4

(i) The corresponding value of the European put option can be obtained

as

fp = Ke−NrTΦ(m;N, p)− S0Φ(m;N, p̂) (4.428)

by means of call-put parity (3.77).
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(ii) The CRR model contains the Black-Scholes analytical formula as the

limiting case as the number of steps tends to infinity.

(iii) For the case of American options, each node must be checked to see

whether early exercise is preferable to holding the option for a further

time period δt.

4.10 Numerical Experiments

Some numerical experiments under the Mellin transform method, double

transform method, Fourier transform method and binomial model are pre-

sented below. The sample programs used in generating the tables and figures

are based on Matlab codes.

4.10.1 Numerical Experiments under the Mellin Trans-
form Method

Experiment 1

By varying the underlying asset price St, consider the performances of the

Mellin Transform Method (MTM), Binomial Model (BM) with (N = 1000

time steps), Implicit Euler (IE) with (400 steps in both time and the un-

derlying state variable) and Monte Carlo Method (MCM) with (1.0 × 107

Monte Carlo trials) against the Black-Scholes Model (BS) for the valuation

of European power put option using the following parameters

n = 1, K = $60, r = 5%, σ = 35%, T = 5, q = 0, c = 2.
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The comparative analyzes of the results of the four methods are shown in

Table 4.3 below.
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Table 4.3: The comparative analyzes of the results of the Black-Scholes Model
(BS), Binomial Model (BM), Monte Carlo Method (MCM), Implicit Euler
(IE) and the Mellin Transform Method (MTM) for the valuation of European
power put option with fixed values of n = 1, K = $60, r = 5%, σ = 35%, T =
5 and c = 2.

S Black-Scholes Binomial Monte Carlo Implicit Mellin
($) Model Model Method Euler Transform
10 36.8746 36.8747 36.8739 36.8799 36.8746
20 28.3391 28.3396 28.3425 28.3442 28.3391
30 21.7413 21.7429 21.7363 21.7387 21.7413
40 16.8115 16.8111 16.8076 16.7920 16.8115
50 13.1399 13.1388 13.1438 13.0886 13.1399
60 10.3856 10.3849 10.3912 10.2826 10.3856
70 8.2972 8.2957 8.2937 8.1183 8.2972
80 6.6954 6.6911 6.6941 6.4130 6.6954
90 5.4528 5.4496 5.4542 5.0373 5.4528
100 4.4785 4.4738 4.4817 3.8995 4.4785
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Analysis of Experiment 1

From Table 4.3, it is observed that the Mellin transform method, binomial

model, Implicit Euler and Monte Carlo method all performed well. The

values generated by the Binomial model, Implicit Euler and Monte Carlo

method are close to that of Black-Scholes model while the values of the

Mellin transform method coincide with that of Black-Scholes model.

Experiment 2

Consider the valuation of European power put options with Forty-Eight

months to go until expiration on the “Standard and Poor’s 500” index (S&P

500), with the underlying asset price of $40, strike price of $100, a continu-

ously compounded risk-free interest rate of 5%, a volatility of 35% and vary-

ing constant annual index dividend estimated at q = {1%, 2%, 3%, 4%, 5%}.

The price of the European power put options for n = {2, 4, 6, 8, 10} using the

Mellin transform method is shown in Table 4.4 below.
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Table 4.4: Price of European power put option.

n q = 0.01 q = 0.02 q = 0.03 q = 0.04 q = 0.05
2 0.93390 1.07390 1.23140 1.40820 1.60600
4 0.00790 0.00980 0.01220 0.01510 0.01870
6 0.00100 0.00130 0.00170 0.00210 0.00270
8 0.00034 0.00044 0.00057 0.00074 0.00096
10 0.00018 0.00023 0.00030 0.00039 0.00050
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Analysis of Experiment 2

From Table 4.4, it is observed that the higher the dividend yield, the higher

the values of the European power put option.

Experiment 3

Consider the valuation of the American power put option by means of the

Mellin Transform Method (MTM) with (a 16-point Gauss-Laguerre quadra-

ture method), 100 time steps and ε = 0.0001 for the calculation of the free

boundary (Ŝt), Accelerated Binomial Model (ABM) with (150 time steps)

(Breen (1989)), Binomial Model (BM) with (N = 150 time steps) (Cox et al.

(1979)), Finite Difference Method (FDM) with (200 steps in both time and

the underlying state variable) (Wilmott et al. (1995)) and Recursive Method

(RM) with (a four-point extrapolation)(Huang et al. (1996)) varying the

volatility σ = {20%, 30%, 40%}, time to expiry T = {1, 4, 7} in months, the

strike price K = {35, 40, 45} in dollars with the following parameters:

St = $40, q = 0, r = 4.88%, n = 1, c = 2

The comparative analyzes of the results of the five methods are shown in

Tables 4.5-4.13. The influences of the volatility and time to expiry on the

price of the option by means of the Mellin transform method are shown in

Tables 4.14-4.16 and Tables 4.17-4.19 respectively. The results Ŝt for the free

boundary of the option were compared with S∗ of Balakrishna (1996). Time

to expiry is T = 1-month for Tables 4.20-4.22 and T = 7-months for Tables
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4.23-4.25.
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Table 4.5: Price of American power put option using T = 0.0833, n = 1,
r = 4.88%, q = 0, σ = 20%, c = 2, St = $40.

K Accelerated Binomial Finite Recursive Mellin
($) Binomial Model Difference Method Transform

Model Method Method
35 0.0061 0.0061 0.0278 0.0062 0.0065
40 0.8517 0.8512 0.9874 0.8543 0.8516
45 4.9200 5.0000 5.0052 5.0020 5.0305

Table 4.6: Price of American power put option using T = 0.0833, n = 1,
r = 4.88%, q = 0, σ = 30%, c = 2, St = $40.

K Accelerated Binomial Finite Recursive Mellin
($) Binomial Model Difference Method Transform

Model Method Method
35 0.0772 0.0775 0.1216 0.0775 0.0777
40 1.3095 1.3083 1.3860 1.3116 1.3098
45 5.0632 5.0600 5.1016 5.0604 5.0578

Table 4.7: Price of American power put option using T = 0.0833, n = 1,
r = 4.88%, q = 0, σ = 40%, c = 2, St = $40.

K Accelerated Binomial Finite Recursive Mellin
($) Binomial Model Difference Method Transform

Model Method Method
35 0.2456 0.2454 0.2949 0.2467 0.2468
40 1.7674 1.7658 1.8198 1.7694 1.7681
45 5.2863 5.2875 5.3289 5.2853 5.2860

Table 4.8: Price of American power put option using T = 0.3333, n = 1,
r = 4.88%, q = 0, σ = 20%, c = 2, St = $40.

K Accelerated Binomial Finite Recursive Mellin
($) Binomial Model Difference Method Transform

Model Method Method
35 0.1994 0.1995 0.2382 0.2004 0.2014
40 1.5752 1.5783 1.6244 1.5873 1.5792
45 4.9253 5.0886 5.1327 5.0954 5.0846

188



UNIV
ERSIT

Y O
F 

IB
ADAN LI

BRARY

Table 4.9: Price of American power put option using T = 0.3333, n = 1,
r = 4.88%, q = 0, σ = 30%, c = 2, St = $40.

K Accelerated Binomial Finite Recursive Mellin
($) Binomial Model Difference Method Transform

Model Method Method
35 0.6977 0.6993 0.7300 0.6973 0.6986
40 2.4781 2.4799 2.5068 2.4919 2.4831
45 5.6978 5.7065 5.7193 5.6970 5.7051

Table 4.10: Price of American power put option using T = 0.3333, n = 1,
r = 4.88%, q = 0, σ = 40%, c = 2, St = $40.

K Accelerated Binomial Finite Recursive Mellin
($) Binomial Model Difference Method Transform

Model Method Method
35 1.3481 1.3505 1.3696 1.3468 1.3470
40 3.3863 3.3835 3.4011 3.3970 3.3879
45 6.5054 6.5103 6.5147 6.5128 6.5095

Table 4.11: Price of American power put option using T = 0.5833, n = 1,
r = 4.88%, q = 0, σ = 20%, c = 2, St = $40.

K Accelerated Binomial Finite Recursive Mellin
($) Binomial Model Difference Method Transform

Model Method Method
35 0.4331 0.43405 0.4624 0.4337 0.4346
40 1.9856 1.9886 2.0177 1.9987 1.9904
45 5.2844 5.2719 5.2699 5.2631 5.2638

Table 4.12: Price of American power put option using T = 0.5833, n = 1,
r = 4.88%, q = 0, σ = 30%, c = 2, St = $40.

K Accelerated Binomial Finite Recursive Mellin
($) Binomial Model Difference Method Transform

Model Method Method
35 1.2218 1.2239 1.2407 1.2233 1.2216
40 3.1622 3.1665 3.1819 3.1842 3.1705
45 6.2395 6.2448 6.2477 6.2303 6.2431
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Table 4.13: Price of American power put option using T = 0.5833, n = 1,
r = 4.88%, q = 0, σ = 40%, c = 2, St = $40.

K Accelerated Binomial Finite Recursive Mellin
($) Binomial Model Difference Method Transform

Model Method Method
35 2.1569 2.1602 2.1676 2.1603 2.1568
40 4.3426 4.3426 4.3567 4.3699 4.3543
45 7.3785 7.3897 7.3792 7.3865 7.3840

Table 4.14: Influence of the volatility σ = 20%, 30% and 40% on the price
of American power put option with T = 0.0833 via the Mellin transform
method.

Strike Price Time to Expiry σ = 20% σ = 30% σ = 40%
K($) T(yrs)

35 0.0833 0.0065 0.0777 0.2468
40 0.0833 0.8516 1.3098 1.7681
45 0.0833 5.0305 5.0578 5.2860

Table 4.15: Influence of the volatility σ = 20%, 30% and 40% on the price
of American power put option with T = 0.3333 via the Mellin transform
method.

Strike Price Time to Expiry σ = 20% σ = 30% σ = 40%
K($) T(yrs)

35 0.3333 0.2014 0.6986 1.3470
40 0.3333 1.5792 2.4831 3.3879
45 0.3333 5.0846 5.7051 6.5095

Table 4.16: Influence of the volatility σ = 20%, 30% and 40% on the price
of American power put option with T = 0.5833 via the Mellin transform
method.

Strike Price Time to Expiry σ = 20% σ = 30% σ = 40%
K($) T(yrs)

35 0.5833 0.4346 1.2216 2.1568
40 0.5833 1.9904 3.1705 4.3543
45 0.5833 5.2638 6.2431 7.3840
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Table 4.17: Influence of the time to expiry T = 0.0833, 0.3333 and 0.5833
on the price of American power put option with σ = 20% via the Mellin
transform method.

Strike Price Volatility T = 0.0833 T = 0.3333 T = 0.5833
K($) σ

35 0.2 0.0065 0.2014 0.4346
40 0.2 0.8516 1.5792 1.9904
45 0.2 5.0305 5.0846 5.2638

Table 4.18: Influence of the time to expiry T = 0.0833, 0.3333 and 0.5833
on the price of American power put option with σ = 30% via the Mellin
transform method.

Strike Price Volatility T = 0.0833 T = 0.3333 T = 0.5833
K($) σ

35 0.3 0.0777 0.6986 1.2216
40 0.3 1.3098 2.4831 3.1705
45 0.3 5.0578 5.7051 6.2431

Table 4.19: Influence of the time to expiry T = 0.0833, 0.3333 and 0.5833
on the price of American power put option with σ = 40% via the Mellin
transform method.

Strike Price Volatility T = 0.0833 T = 0.3333 T = 0.5833
K($) σ

35 0.4 0.2468 1.3470 2.1568
40 0.4 1.7681 3.3879 4.3543
45 0.4 5.2860 6.5095 7.3840

Table 4.20: Free boundary of American power put option using T = 0.0833,
n = 1, r = 4.88%, q = 0, σ = 20%, c = 2.

Strike Price Stock Price σ Ŝt S∗

K($) St($) Balakrishna, (1996)
35 40 0.2 31.7384 31.704
40 40 0.2 36.2725 36.274
45 40 0.2 40.8066 40.808
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Table 4.21: Free boundary of American power put option using T = 0.0833,
n = 1, r = 4.88%, q = 0, σ = 30%, c = 2.

Strike Price Stock Price σ Ŝt S∗

K($) St($) Balakrishna, (1996)
35 40 0.3 29.7825 29.779
40 40 0.3 34.0370 34.033
45 40 0.3 38.2914 38.287

Table 4.22: Free boundary of American power put option using T = 0.0833,
n = 1, r = 4.88%, q = 0, σ = 40%, c = 2.

Strike Price Stock Price σ Ŝt S∗

K($) St($) Balakrishna, (1996)
35 40 0.4 27.8478 27.849
40 40 0.4 31.8260 31.827
45 40 0.4 35.8041 35.805

Table 4.23: Free boundary of American power put option using T = 0.5833,
n = 1, r = 4.88%, q = 0, σ = 20%, c = 2.

Strike Price Stock Price σ Ŝt S∗

K($) St($) Balakrishna, (1996)
35 40 0.2 29.0740 29.085
40 40 0.2 33.2280 33.240
45 40 0.2 37.3810 37.395

Table 4.24: Free boundary of American power put option using T = 0.5833,
n = 1, r = 4.88%, q = 0, σ = 30%, c = 2.

Strike Price Stock Price σ Ŝt S∗

K($) St($) Balakrishna, (1996)
35 40 0.3 25.4730 25.483
40 40 0.3 29.1120 29.124
45 40 0.3 32.7510 32.764
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Table 4.25: Free boundary of American power put option using T = 0.5833,
n = 1, r = 4.88%, q = 0, σ = 40%, c = 2.

Strike Price Stock Price σ Ŝt S∗

K($) St($) Balakrishna, (1996)
35 40 0.4 22.1470 22.156
40 40 0.4 25.3106 25.321
45 40 0.4 28.4744 28.486
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Analysis of Experiment 3

From literature, the recursive method is a standard alternative method for

the valuation of American put option. Thus comparing these other methods

with the recursive method, it is observed from Tables 4.5-4.13 that the Mellin

transform method is the closest to the recursive method with respect to

price as volatility increases. It is observed from Tables 4.14-4.16 that as the

volatility increases, the price increases. From Tables 4.17-4.19, it is observed

that as the time to expiry increases the price increases. From Tables 4.20-

4.22 and Tables 4.23-4.25, it is observed that the values obtained for the free

boundary Ŝt are close to that of Balakrishna (1996). Also from Tables 4.20-

4.22 and Tables 4.23-4.25, it is observed that the value of the free boundary

Ŝt decreases as volatility increases.

Experiment 4

By varying the dividend yield, q = {4%, 10%} and risk-free interest rate,

r = {4%, 10%}, consider the valuation of the American power put option via

the Mellin transform method with the following parameters

n = 1, c = 2, St = $100, σ = 40%, K = $100, T = 1, t = 0

The free boundary is obtained as S̄t = $63 for the case when r > q, that is

r = 10% and q = 4%. For the case when r < q, that is r = 4% and q = 10%,

the free boundary is obtained as S̄t = $32.
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Analysis of Experiment 4

In experiment 4, dividend yields are paid continuously at a rate q. It is

observed that increase in risk-free interest rate r and decrease in dividend

yield q lead to increase in the value of the free boundary of the American

power put option. Similarly, it is observed that decrease in risk-free interest

rate r and increase in dividend yield q lead to decrease in the value of the

free boundary of the American power put option.

Experiment 5

Assume that the stocks are currently trading at $10 and $10 with annual

volatilities of σ1 = 40% and σ2 = 10%, 20%, 30% respectively. The basket

contains one unit of the first stock and one unit of the second stock. On

January 1, 2015, an investor wants to buy a 1-year put option with a strike

price of $20. The current annualized, continuously compounded interest rate

is 3%. Use this data to compute the price of the European basket put option

using the Mellin transform in two dimensions with c1 = c2 = 3, M = 128

and binomial (tree) model (Schneggenburger (2002)) varying the correlation

coefficients ρ = {−0.5, 0.5}. The comparative analyzes of the results of the

two methods for negative and positive correlation coefficients are shown in

the Tables 4.26 and 4.27 below respectively.

The effect of the correlation coefficients on the price of the European basket

put option with non-dividend paying stocks via the Mellin transform in two

dimensions is displayed in the Figure 4.7 below.
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Table 4.26: The comparative analyzes of the results of the double Mellin
transform method and binomial (tree) model with negative correlation coef-
ficient.

σ1 σ2 ρ Binomial (Tree) Double Mellin Transform
Model Method

0.1 0.1 -0.5 1.108 1.104
0.1 0.2 -0.5 1.083 1.082
0.1 0.3 -0.5 1.198 1.198

Table 4.27: The comparative analyzes of the results of the double Mellin
transform method and binomial (tree) model with positive correlation coef-
ficient.

σ1 σ2 ρ Binomial (Tree) Double Mellin Transform
Model Method

0.1 0.1 0.5 1.496 1.494
0.1 0.2 0.5 1.783 1.782
0.1 0.3 0.5 2.101 2.100
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Figure 4.7: Effect of correlation coefficients on the price of European basket
put option.
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Analysis of Experiment 5

From Tables 4.26, it is observed that when the correlation coefficient is nega-

tive (ρ = −0.5) the prices of the European basket put option via the binomial

model and Mellin transform in two dimensions decrease. From Table 4.27,

it is observed that when the correlation coefficient is positive (ρ = 0.5) these

prices increase. However the prices via the binomial model are greater than

that of the Mellin transform in two dimensions in both cases. From Figure

4.7, it is observed that the option’s value generated by the Mellin transform

in two dimensions increases with the volatility.

Experiment 6

Consider the valuation of European basket put option which pays three-

dividend yields using the Triple Mellin Transform Method (TMT) with c1 =

c2 = c3 = 3, M = 128, Monte Carlo Method (MCM) with (1.0× 104 Monte

Carlo trials) (Wan (2002)) and Implied Binomial Model (IBM) with (10 time

steps) (Wan (2002)) in the context of Black-Scholes-Merton Model (BSM)

with the following parameters:

Time to expiry, T = 12 months

Risk-free interest rate, r = 5%

Dividends paying stocks, q1 = q2 = q3 = 5%

Correlation coefficient, ρ =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1


Underlying asset prices, S1 = S2 = S3 = 33.33
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Strike price, K = {60, 70, 80, 90, 100, 110, 120, 130, 140}

Volatilities, σ1 = σ2 = σ3 = 20%

The comparative analyzes of the results of the three methods against the

Black-Scholes-Merton model are shown in the Table 4.28 below. The absolute

differences to the results from the Black-Scholes-Merton model are shown in

Table 4.29 below.
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Table 4.28: The comparative analyzes of the results of the three methods
against the Black-Scholes-Merton model.

Strike Price,K BSM TMT MCM IBM
60 0.0028 0.0028 0.0028 0.0030
70 0.0652 0.0652 0.0697 0.0717
80 0.5420 0.5420 0.5470 0.5846
90 2.2921 2.2921 2.2884 2.3923
100 6.1744 6.1744 6.1516 6.2738
110 12.3145 12.3145 12.3179 12.3909
120 20.1422 20.1422 20.1567 20.196
130 28.9356 28.9356 28.9516 28.9679
140 38.1788 38.1788 38.1907 38.1849

Table 4.29: The absolute differences to the results from the Black-Scholes-
Merton model.

Strike Price,K TMT IBM MCM
60 0.0000 0.0002 0.0000
70 0.0000 0.0065 0.0045
80 0.0000 0.0426 0.0050
90 0.0000 0.1002 0.0037
100 0.0000 0.0994 0.0228
110 0.0000 0.0764 0.0034
120 0.0000 0.0538 0.0145
130 0.0000 0.0323 0.0160
140 0.0000 0.0061 0.1190
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Figure 4.8: The comparative analyzes of the results using Table 4.28.
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Figure 4.9: The absolute differences to the results from the Black-Scholes-
Merton model using Table 4.29.
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Analysis of Experiment 6

From Figure 4.8, it is observed that the prices of the European basket put

option with three dividend yields generated by the Monte Carlo method

and implied binomial model are satisfactory in the sense that they are close

to the value obtained by the Black-Scholes model. The value for the triple

Mellin transform method coincides with that obtained from the Black-Scholes

model. This is so because using the convolution property of the triple Mellin

transform, the integral representation model obtained for the price of the

European basket put option is the same as the Black-Scholes model. From

Figure 4.9, it is observed that there is no significant difference between price

generated by the triple Mellin transform method and that of the Black-

Scholes model. This confirms the explanation given by Figure 4.8.

4.10.2 Numerical Experiments under the Double Trans-
form Method

Experiment 7

Consider the pricing of Asian option using the following parameters:

S0 = 100, σ = 10%, 20%, 30%, 40%, K = 90, 95, 100, r = 9%, T = 1

and

nf = mf + 15, np = mp + 15, gf = gp = 22.4

The accuracy desired and parameters of the Euler algorithm are shown in

Table 4.30 below. The parameters of the Euler algorithm and Asian option
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prices are shown in Table 4.31 below. The comparative analyzes of the re-

sults of double numerical inversion, lognormal approximation (Levy (1992)),

Crank Nicolson finite difference method with 3000 spatial and time grids

(Rogers and Shi (1992)) are shown in Table 4.32 below.
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Table 4.30: Accuracy desired and parameters of the Euler algorithm with
S0 = 100, K = 100, r = 9%, T = 1.

No. of Decimal Digits 2 3 4 5
Volatility, σ mf ;mp mf ;mp mf ;mp mf ;mp

0.1 15;115 15;115 35;115 35;135
0.2 15;15 15;35 15;55 15;55
0.3 15;15 15;35 15;15 15;15
0.4 15;15 15;15 15;15 15;15

Table 4.31: The parameters of the Euler algorithm and Asian option prices
with S0 = 100, K = 100, r = 9%, T = 1.

σ mf ;mp 15 35 55 75 95 115 135
0.10 15 5.293 4.913 4.904 4.913 4.915 4.915 4.915
0.10 35 5.293 4.913 4.904 4.913 4.915 4.915 4.915
0.10 55 5.293 4.913 4.904 4.913 4.915 4.915 4.915
0.10 75 5.293 4.913 4.904 4.913 4.915 4.915 4.915
0.10 95 5.293 4.913 4.904 4.913 4.915 4.915 4.915
0.20 15 6.776 6.777 6.777 6.777 6.777 6.777 6.777
0.20 35 6.776 6.777 6.777 6.777 6.777 6.777 6.777
0.20 55 6.776 6.777 6.777 6.777 6.777 6.777 6.777
0.20 75 6.776 6.777 6.777 6.777 6.777 6.777 6.777
0.20 95 6.776 6.777 6.777 6.777 6.777 6.777 6.777
0.30 15 8.828 8.829 8.829 8.829 8.829 8.829 8.829
0.30 35 8.828 8.829 8.829 8.829 8.829 8.829 8.829
0.30 55 8.828 8.829 8.829 8.829 8.829 8.829 8.829
0.30 75 8.828 8.829 8.829 8.829 8.829 8.829 8.829
0.30 95 8.828 8.829 8.829 8.829 8.829 8.829 8.829
0.40 15 10.924 10.924 10.924 10.924 10.924 10.924 10.924
0.40 35 10.924 10.924 10.924 10.924 10.924 10.924 10.924
0.40 55 10.924 10.924 10.924 10.924 10.924 10.924 10.924
0.40 75 10.924 10.924 10.924 10.924 10.924 10.924 10.924
0.40 95 10.924 10.924 10.924 10.924 10.924 10.924 10.924
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Table 4.32: The comparative analyzes of the results of Asian option pricing
models with S0 = 100, r = 9%, T = 1.

σ K Lognormal Crank Nicolson Double Numerical
Approximation Finite Inversion

Difference nf ;mf = 15; 30
Method np;mp = 15; 30

with 3000 spatial
and time grids

0.1 90 13.386 13.385 12.534
0.1 95 8.917 8.910 8.511
0.1 100 4.909 4.913 5.293
0.2 90 13.862 13.831 13.737
0.2 95 10.030 9.996 9.928
0.2 100 6.804 6.777 6.776
0.3 90 15.067 14.984 14.983
0.3 95 11.733 11.656 11.655
0.3 100 8.886 8.829 8.828
0.4 90 16.654 16.500 16.500
0.4 95 13.648 13.511 13.510
0.4 100 11.031 10.923 10.924
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Analysis of Experiment 7

From Table 4.30, it is observed that as the volatility increases, the values

of the parameters mf and mp decrease quickly and consequently the com-

putational time required for estimating the option price decreases. Table

4.31 shows how the choice relative to mf and mp affects the estimate in the

Asian option price. It is observed from Table 4.32 that the value of double

numerical inversion agrees with the values of lognormal approximation and

Crank Nicolson finite difference method.

4.10.3 Numerical Experiments under the Fourier Trans-
form Method

Experiment 8

Consider the valuation of the European call option with dividend-paying

stock via fast Fourier transform method (FFT) and Fourier-Mellin transform

method (FMT) with m = 1 in the context of Black-Scholes-Merton model

(BSM) with the following parameters in Table 4.33 below.
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Table 4.33: The parameters.

Variables Values
Underlying asset price, St 100

Strike price, K 80, 90, 100, 110, 120
Risk-free interest rate, r 5%

Volatility, σ 50%
Dividend yield, q 5%
Time to expiry, T 0.0822

Size of integration grid, N 214

Integrability, a 2
Fineness, η 5%
Constant, c 1

The option values are shown in Tables 4.34 and 4.35. The absolute error

and log absolute error for the FFT and FMT are shown in Figures 4.12 and

4.13, respectively.
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Table 4.34: The comparative analyzes of the results of the fast Fourier trans-
form method and Black-Scholes-Merton model.

Strike Price, K Fast Fourier Black-Scholes-Merton
Transform Method Model

80 20.2407 20.2459
90 11.7753 11.7794
100 5.6873 5.6906
110 2.2636 2.2663
120 0.7521 0.7544

Table 4.35: The comparative analyzes of the results of the Fourier-Mellin
transform method and Black-Scholes-Merton model.

Strike Price, K Fourier-Mellin Black-Scholes-Merton
Transform Method Model

80 20.2459 20.2459
90 11.7794 11.7794
100 5.6906 5.6906
110 2.2663 2.2663
120 0.7544 0.7544
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Figure 4.10: The comparative analyzes of the results of the fast Fourier
transform method (FFT) and Black-Scholes-Merton model (BSM) using Ta-
ble 4.34.
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Figure 4.11: The comparative analyzes of the results of the Fourier-Mellin
transform method (FMT) and Black-Scholes-Merton model (BSM) using Ta-
ble 4.35.
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Figure 4.12: The absolute and log absolute European option price errors be-
tween fast Fourier transform method (FFT) and Black-Scholes-Merton model
(BSM).
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Figure 4.13: The absolute and log absolute European option price errors
between Fourier-Mellin transform method (FMT) and Black-Scholes-Merton
model (BSM).
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Analysis of Experiment 8

From Figures 4.10 and 4.11, it is observed that the fast Fourier transform

and Fourier-Mellin transform methods provide a close approximation to the

Black-Scholes-Merton model and they both have computational advantages

in terms of speed. Figures 4.12 and 4.13 confirm the results obtained from

Figures 4.10 and 4.11 respectively.

4.10.4 Numerical Experiments under the Binomial Model

Experiment 9

Consider the valuation of a vanilla option on a stock paying a known dividend

yield with the following parameters:

S0 = 50, r = 0.1, T = 0.5, τ = 0.17, σ = 0.25, q = 0.05

The result obtained is shown in Table 4.36 below.
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Table 4.36: Out of the money, at the money and in the money vanilla options
on a stock paying a known dividend yield.

K Ec Ac E.E.Premium Ep Ap E.E.Premium
30 18.97 20.50 1.53 0.004 0.004 0.00
45 6.06 6.47 0.41 1.37 1.49 0.12
50 3.32 3.42 0.10 3.38 3.78 0.40
55 1.62 1.63 0.01 6.40 7.31 0.91
70 0.11 0.11 0.00 19.19 21.35 2.16
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Analysis of Experiment 9

From Table 4.36, it is observed that the American option with dividend pay-

ing stock is always worth more than its European counterpart with respect

to price. When there is no dividend yield the price of the American call

and that of its European call counterpart are the same. When the option is

deeply “in the money”, it is observed that American option has a high early

exercise premium. The premium of both the put and call options decreases

as the option goes out of the money. When the option is deeply “out of the

money”, it is observed that both call and put are worth the same this is

because early exercise premium is zero.

Experiment 10

Consider the convergence of binomial model against the “true” Black-Scholes

price for vanilla call and put options with

S0 = 45, K = 40, T = 0.5, r = 0.1, σ = 0.25

The Black-Scholes prices for vanilla call and put options are 7.6200 and

0.6692, respectively. The values of European and American style options via

the Cox-Ross-Rubinstein “CRR” model are shown in Table 4.37. The con-

vergence of Cox-Ross-Rubinstein “CRR” model to the Black-Scholes value

of the option as N increases is shown in Figure 4.14 below.
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Table 4.37: The values of European and American style options via the Cox-
Ross-Rubinstein“CRR” model.

N European Call American Call European Put American Put
20 7.6305 7.6305 0.6797 0.7235
40 7.6251 7.6251 0.6742 0.7228
60 7.6219 7.6219 0.6710 0.7199
80 7.6124 7.6124 0.6616 0.7134
100 7.6216 7.6216 0.6707 0.7214
120 7.6181 7.6181 0.6673 0.7182
140 7.6209 7.6209 0.6700 0.7211
160 7.6178 7.6178 0.6670 0.7184
180 7.6211 7.6211 0.6703 0.7213
200 7.6171 7.6171 0.6663 0.7185
300 7.6199 7.6199 0.6691 0.7208
500 7.6204 7.6204 0.6695 0.7211
700 7.6195 7.6195 0.6691 0.7205
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Figure 4.14: Convergence of the European call price for a non-dividend pay-
ing stock using “CRR” model to the Black-Scholes value of 7.6200.
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Analysis of Experiment 10

From Table 4.37, it is observed that the values of European call and Ameri-

can call options are the same since it is never optimal to exercise an American

call option before expiration. As the time step N increases, the value of the

American put option increases faster than that of its European counterpart

because of the early exercise premium. From Figure 4.14, it is observed that

for very large N the option value of Cox-Ross-Rubinstein “CRR” model con-

verges to that of the Black-Scholes model.
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Chapter 5

Conclusions and
Recommendations

5.1 Conclusions

The valuation of American power put option with non-dividend and div-

idend yields, respectively, based on the Mellin transform method has been

studied extensively in this thesis. Integral representations for the price of

the European power put option with non-dividend and dividend yields, re-

spectively was obtained. It was established that the integral representations

reduced to the “Black-Scholes-like model” and “Black-Scholes-Merton-like

model” for the cases of non-dividend and dividend yields, respectively. For

an American power put option on one underlying asset, integral represen-

tations for the price and free boundary for both non-dividend and dividend

yields, respectively was obtained by means of the Mellin transform method.

To emphasize the generality of the results, the equivalence of the integral rep-

resentation for the price of American power put option with dividend yield
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to the integral characterizations of Kim (1990) and Carr et al. (1992) for

n = 1 was shown. By using cosine and sine transforms, the integral repre-

sentation for the price of American power put option with dividend yield for

n = 1 was transformed to a form that permits the use of the Gauss-Laguerre

quadrature method. Expressions for the price and the free boundary of the

perpetual American power put options using the super-contact condition was

obtained. The Mellin transform in higher dimensions was used to obtain the

expressions for the integral equations for prices of the put options on a bas-

ket of multi-dividend paying stocks. For an American option on a basket

of multi-dividend paying stocks, an expression for the price and the integral

equation for the free boundary was obtained and solved numerically. Other

related methods such as double transform method, Fourier transform method

and binomial model for options valuation were also considered. To provide

a sufficient numerical analysis, the results generated by the Mellin transform

method was compared with accelerated binomial model, binomial model and

finite difference method for the valuation of American power put option for

n = 1 in the context of the recursive method. Numerical results showed that

the Mellin transform method was the closest to the recursive method with

respect to price as volatility increases. The price of the option generated

by the Mellin transform method increases for higher values of volatility and

time to expiry. Hence the Mellin transform method gives aids in obtaining

a closed-form solution for the price of American power put option which

have been difficult to obtain through some other methods this is due to its
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flexibility, efficiency and the robustness.

5.2 Contributions to Knowledge

Contributions to the knowledge of this thesis are outlined below:

(i) The Mellin transform method was used to solve the partial differential

equations for the price of power put options namely European and

American power put options with non-dividend and dividend yields,

respectively.

(ii) The integral representations for the price of the European power put

option which pays both non-dividend and dividend yields, respectively

was obtained.

(iii) It was shown that the integral representations for the European power

put option with non-dividend and dividend yields reduced to the fun-

damental valuation formula “Black-Scholes-like” and “Black-Scholes-

Merton-like” models, respectively by means of the convolution property

of the Mellin transform method.

(iv) The integral representations for the price and the optimal exercise

boundary (called the free boundary) of the American power put options

with non-dividend and dividend yields, respectively was obtained.

(v) The optimal exercise boundary and the analytical valuation formula

for the perpetual American power put option with non-dividend and
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dividend yields, respectively was obtained.

(vi) A closed-form solution for the price of the American power put option

with dividend yield for n = 1 was obtained.

(vii) The integral representations for the price of put options on a basket

of multi-dividend yields using the multidimensional Mellin transform

method was obtained.

5.3 Recommendations

Some extensions and modifications of the methodology can be explored

by further research. A natural extension is the valuation of American and

European power options with dividend yield under jump diffusion processes.

In the case of European options, extension may be possible to other price

processes such as stochastic volatility and interest rate models. The method-

ology can be applied to the valuation of path dependent American and four-

asset options with more complicated payoffs using univariate Mellin trans-

form method and Mellin transform in four dimensions respectively.
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