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ABSTRACT 

Spatial qualification problem, an aspect of spatial reasoning, is concerned with the 

impossibility of knowing an agent‟s presence at a specific location and time. An 

agent‟s location determines its ability to carry out an action given its known spatial 

antecedents. There are sparse works on the formalisation of this problem. Qualitative 

reasoning approach is the most widely used approach for spatial reasoning due to its 

ability to reason with incomplete knowledge or reduced data set. This approach has 

been applied to spatial concepts, such as, shapes, sizes, distance and orientation but not 

spatial qualification. Therefore, this work was aimed at formalising a logical theory for 

reasoning about the spatial qualification of an agent to carry out an action based on 

prior knowledge using qualitative reasoning approach. 

The notions of persistence, discretisation and commutative distance coverage were 

used as parameters in formalising the concept of spatial qualification. The axioms and 

derivation rules for the theory were formally represented using quantified modal logic. 

The formalised theory was compared with standardised systems of axioms: S4 

(containing Kripke‟s minimal system K, axioms T and 4) and S5 (containing K,T,4 

and axiom B). The characteristics of the domain of the formalised theory were 

compared with Barcan‟s axioms, and its semantics were described using Kripke‟s 

Possible World Semantics (PWS) with constant domain across worlds. A proof system 

for reasoning with the formalised theory was developed using analytical tableau 

method. The theory was applied to an agent‟s local distribution planning task with set 

deadline. Cases with known departure time and routes were considered to determine 

the possibility of an agent‟s presence at a location. 

From the formalisation, a body of axioms named Spatial Qualification Model (SQM) 

was obtained.  The axioms showed the presence log and reachability of locations as 

determinants for agent‟s spatial presence. The properties exhibited by the formalised 
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model when examined in light of S4 and S5 systems of axioms were KP1, KP2 

(equivalent to axiom K), TP and 4P (equivalent to axioms T and 4 respectively) in an 

S4 system. The SQM therefore demonstrated the characteristics of an S4 system of 

axioms but fell short of being an S5 system. Barcan‟s axiom held, confirming constant 

domain across possible worlds in the formalised model. Explicating the axioms in the 

SQM using PWS enabled the understanding of tableau proof rules. Through closed 

tableaux, the SQM was demonstrably semi-decidable in the sense that the possibility 

of an agent‟s presence at a certain location and time was only provable in the 

affirmative, while its negation was not. Depending on the route, the application of 

SQM to the product distribution planning domain resulted in agent‟s feasible 

availability times, within or outside the set deadline to assess the agent‟s spatial 

qualification in agreement with possible cases in the planning task. 

The spatial qualification model specified the spatial presence log and reachability 

axioms required for reasoning about an agent‟s spatial presence. The model 

successfully assessed plans of product distribution task from one location to the other 

for vans‟ availability.  

Keywords: Spatial qualification model, Quantified modal logic, Tableau proof, 

Possible world semantics. 

Word count:  497 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background and Motivation 

Spatial qualification problem is a specific type of qualification problem that deals with 

the impossibility of knowing an intelligent agent‟s presence at a specific location at a 

certain time in order to carry out an action or participate in an event given its known 

location antecedents.  The qualification problem (McCarthy, 1986) deals with the 

impossibility of satisfying all possible preconditions required for a real-world action to 

take place or have an intended effect.  This is a well-known problem in the field of 

artificial intelligence (AI) (Theilscher, 2001; McCarthy and Hayes, 1969).  In spatial 

qualification, both the knowledge of the antecedents and the uncertain knowledge of 

possibility are tied to time as well as space.  This kind of qualification is an important 

precondition to spatial actions which has not been considered in most of the 

formalisms such as temporal reasoning with plans (Allen, 1991) and TRAINS project 

(Allen and Schubert, 1991). This may possibly be due to the uncertain nature of spatial 

knowledge or the inadequacy of the existing logical languages for representation of 

such uncertain knowledge. This involves the use of general commonsense knowledge 

to tackle the problem and build logics about that particular situation.   

The spatial qualification problem is a general problem that is feasible in several 

application domains such as: Alibi Reasoning, where a person‟s presence at location, l1 

at time t1 rules out his/her being present at location, l2 at time t1; Homeland Security, 

for example, Automated Teller Machine (ATM) Fraud, to investigate the presence of 

an account holder at certain locations where multiple transactions occur within 

questionable time frame; and Planning, example, a shipping/distribution process, 

where a planner needs to work out the feasibility of the delivery process based on its 

current location.  
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Several calculi around spatial domains starting from spatial concepts have been 

defined and formalised (Freksa, 1992; Randell et al., 1992; Borgo et al., 1996; Carsati 

and Varsi, 1997; Van de Wedge et al., 2004; Galton and Hood, 2005; Bogaert, 2008).  

The peculiarity amongst these calculi is the use of qualitative reasoning approach in 

representing spatial concepts and their relationships.  This is due to the vagueness of 

the spatial knowledge.  Qualitative reasoning allows the abstraction away from the 

quantities of physical domain and enables qualitative mechanisms to be built without 

resorting to complex methods of calculus.  In qualitative reasoning, inferences can be 

made in the absence of complete knowledge without probabilistic or fuzzy techniques 

which may rely on arbitrarily assigned probability or membership values (Cohn, 

1999).  According to Renz and Nebel (2007), when representing knowledge 

qualitatively, one does not need to depend on specific values and granularities as 

obtained in quantitative knowledge but uses limited vocabularies to compare two 

objects, for instance „a is smaller than b‟ and „b is smaller than c‟.  This is closer to 

how humans represent and reason about commonsense knowledge.  Reasoning is the 

basis for knowledge and it gives explanation or justification for something. 

Due to the incompleteness of existing models in handling everyday knowledge of 

space and time, spatial and temporal aspects of commonsense knowledge fall under the 

problematic aspect of everyday knowledge with identified problems of vagueness, 

uncertainty and granularity (Galton, 2009; Cohn and Renz, 2008).   While vagueness 

and uncertainty affects space, granularity affects both time and space and its 

combination.  Spatial knowledge is vague, incomplete, continuous (that is, it changes 

with respect to time) thereby paving way for qualitative reasoning.  Vagueness and 

ambiguity in spatial reasoning is as a result of lack of consensus.  One of such lack of 

consensus is the Leibniz‟s contention that there is no way of identifying a region of 

space except by referencing what is or could be located or take place at that region 

against Newtonian‟s view of space being an individual entity in its own right 

independent of whatever entities may inhabit it (Casati and Varzi, 1997). 

Commonsense reasoning approximates but simplifies the sophisticated mathematical 

concepts.  Asher and Vieu (1995) confirmed that commonsense spatial reasoning tasks 

do not require the full power of mathematical topology, geometry and analysis but 

refer to points without measure.  Freksa (1992) also added that reasoning based on 
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qualitative information is aimed at restricting knowledge processing to that part of the 

information which is likely to be relevant in the decision process.  The required 

knowledge for solving the spatial qualification problem is one of such information 

needed for decision making in reality. 

Knowledge representation and reasoning (KRR) community tends to restrict itself 

more to the use of classical logics where only the truth value of a formula is 

determined instead of non-classical which has to do with the way, mode and state of 

the truth of a formula (Bennett, 1994).  These classical logics can rarely predict the 

future in uncertain cases.  Therefore, there is need to represent and reason with spatial 

knowledge using a more flexible logical language such as modal logics (Bennett, 

1996). 

Spatial qualification is an important precondition for any spatially located agent to 

participate in an action, and this is seen to be missing in early works in the field of 

KRR, such as that on temporal reasoning with plans (Allen, 1991).  There are sparse 

works on the formalisation of spatial qualification in AI literature.  The frequently 

employed classical logics can rarely predict the future in uncertain cases.  The few 

cases, where the spatial knowledge is represented for reasoning include the one 

employed to solve the adversarial geospatial abduction problem (Shakarian et al., 

2011).  This approach used the reward functions to encode the goals.  In a stochastic 

domain (Dean et al., 1993), where space is divided into a grid of locations with four 

directional states allocated to each of the states, the use of reward functions for 

efficient planning require the deliberation interval (that is, the time interval between 

the current time and deadline). 

Qualitative reasoning approach, adopted in this work, allows inferences to be made in 

the absence of complete knowledge without probabilistic or fuzzy techniques which 

may rely on arbitrarily assigned probability or membership values (Cohn, 1999). 

1.2  Problem Statement 

Qualitative spatial reasoning (QSR) emerged as a sub-field in KRR and is now a full-

fledged sub-field in AI towards the development of qualitative calculi that solve most 

of the reasoning problems (Forbus et al, 1991).  Cohn (1997) pointed out that through 

qualitative reasoning abilities, QSR field got challenged to provide calculi that will 
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allow machines to represent and reason with spatial entities of higher dimension, 

without resorting to the traditional quantitative techniques.  Increased researches in 

QSR have addressed different aspects of spatial concepts including topology (Randell 

et al., 1992), orientation (Freksa, 1992), shape (Carsati and Varzi, 1997), size (Borgo 

et al., 1996) and distance (Bogaert, 2008).  Attempts to categorize „place‟ as it relates 

with other spatial concepts as neighbourhood, region, district, area and location have 

also been made (Bennett and Agarwal, 2007).   

Although the qualification problem is a well-known problem in AI field, none of these 

attempts addressed the qualification problem with respect to space.  This research 

therefore addresses the spatial qualification problem by investigating spatial 

qualification.  Thus the problem statement for this research is stated as a question: 

Given a prior antecedent that an intelligent agent has been present at a 

certain location, is it possible for the agent to have been present at the 

scene of incidence at the time of incidence?     

An attempt towards giving an answer to the above question might lead to its 

refinement to:  

Is movement of the agent from its last known location to the place of 

incidence possible within the time the agent was last sighted and the 

time of incidence? 

1.3  Research Questions 

The following research questions are addressed in this thesis. 

(i) Are there relations between previous locations of an agent at a certain time and 

possible agent‟s location at the current time? 

(ii) Can such relations be formalised? 

(iii) Can such relations be represented in a language that allows new inferences to 

be made about the relations? 

1.4  Aim and Objectives of the Study 

The aim of this work is to formalise the problem of spatial qualification with respect to 

time.  Spatial qualification in this context is the possibility that an agent could be 

present at a particular place at a certain time given the agent‟s prior location 
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antecedents. The formalism will provide a logical framework for investigating the 

problem.   

The specific objectives are to:  

(i) Decide on an appropriate language to be used for the logical theory. 

(ii) Use the syntax of the language to formalise the domain of spatial qualification. 

(iii) Define the formal semantics of the language. 

(iv) Develop a proof system for the formalised logic.  

(v) Apply the logical model to a planning distribution domain using case studies of 

spatial qualification problem for investigation. 

1.5  Methodology 

The formalism made use of the Quantified Modal Logic (QML), otherwise known as 

the First-Order Modal Logic (FOML), as its representational language.  This language 

combines the expressivity of First-Order logic with the dynamics of Modal logic as its 

key feature.  The dynamics of Modal Logic has to do with its ability to change over 

time.  In modal logic, a formula (proposition) is necessarily true or possibly true.  The 

necessarily and possibly symbols are  and  respectively.  Unlike the monotonic 

reasoning system, any logical system with the modalities of modal logic can reason 

like humans in real life.  The need to make valid conclusions in uncertain domains as 

new facts (beliefs) are introduced requires the introduction of modalities to make the 

theory flexible.  Modal logic allows for extensions that make sense in the context of 

possible worlds or alternate universes to be provided to the defined concepts.  For 

example the concept „X is true‟ may have extensions.  These extensions are known as 

modalities. Examples of concepts with such extensions include „X is believed to be 

true‟, „X is known to be true‟, „X ought to be true‟, „X is eventually true‟, and „X is 

necessarily true‟.  Hence, modalities can be viewed as a connective that is not truth-

functional which takes a formula (or formulas) and produces a new formula with a new 

meaning. 

 Again, the structure of the Possible World Semantics (PWS) (Fitting, 2008) is used in 

the formalism to semantically explicate the logical structure of the formal theory.  The 

possible world structure is useful to formally explain in detail the theory to show its 

implications.  A possible world is defined by Menzel (1990) as a universe in contrast 
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with reality.  It is also a region indexed with time.  This follows from the Kripke model 

structure which is the basic modal logic model (Zalta, 1995).  Kripke structure is a 

triple M = (W,R,V), where W is the non-empty set of possible worlds (that is states in 

a computation), R  W  W is the accessibility relation (otherwise called transition 

relation) and V: (Prop  W) → (true, false) is a valuation function (which tells us the 

properties that is true or false in different worlds) (Goldblatt, 2005). 

Figure 1.1 illustrates the Kripke model and the relations: where p and q are elements of 

the W, which is a set of w1, w2 and w3 called worlds, states or points with w1Rw2 

meaning w2 is accessible from w1 or w1 sees w2 or w2 succeeds w1.  

Another methodology used in this research the analytical Tableau Proof method to 

further prove the formalised logic for soundness and completeness. Formal axioms in 

the sound proven logical model are then applied to a product distribution planning 

domain for reasoning about plans with deadlines. 

1.6 Basic Assumptions 

In this thesis, the following basic assumptions were made: 

(i) That all agents have access to only one mode of transport 

(ii) That an agent is restricted to direct paths only. 

(iii) That the formalism works with prior location antecedent or given knowledge.  

(iv) Two worlds are accessible if there is any route or path between these worlds in 

existence. 

(v) Available paths have known distances, time stamps based on an assumed speed 

limits assigned to them.  So, our intelligent agent has an idea of the existing 

paths, their distances and their equivalent speed limit.  Although, the paths with 

the shortest distances are often considered, sometimes, these paths might not be 

the fastest route depending on the state of the road.  Oftentimes, routes with 

shortest distances and at deplorable states might take longer time to traverse 

than routes with longer distances without obstacle.  The use of the given speed 

limit in determining the time it takes one to traverse these routes makes it 

adequate for handling cases that fastest routes alone cannot. 
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Figure 1.1: The Kripke Model 

(Goldblatt, 2005) 
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1.7 Organization of the rest of the thesis 

The rest of the theses is organised as follows. Chapter two describes in detail the 

concept of qualitative spatial reasoning, theories for representing and reasoning with 

these spatial objects and the various logics used.  The review of non-classical logic 

(defeasible and modal logic) pointing out the various forms of modal logic and various 

semantic structures for logic interpretation such as the possible world semantics for 

modal logics and situation semantics are also discussed in detail. 

In chapter three, the model for the spatial qualification logic is defined showing the 

syntax and semantics of the logical theory with well described and formal axioms 

showing how intelligent agents reason.   

In Chapter four, the proof system for the logical theory is developed using the analytic 

tableau proof method.   

Chapter five demonstrates how the logical theory is applicable to the planning domain 

where a distribution plan is assessed and reasoned with. This domain is actually chosen 

to extend the idea given in the TRAINs project.   

Chapter six gives the summary and conclusion, pointing out the contribution of the 

thesis to knowledge. Also, recommendations of our formal theory for reasoning with 

spatial entities and trends to further research were clearly pointed out. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 General Overview 

This chapter highlights the major concepts surrounding this thesis, research carried out 

around them, the identified gaps and the need to close the gaps.  The chapter starts 

with the introduction of the qualitative reasoning approach, the key principles of this 

reasoning approach, its impacts on reasoning with domain concepts and its limitations.  

Highlights of spatial concepts with their reasoning problems and attempts to use 

qualitative reasoning approach to address them is also discussed here.  This is followed 

by trend of recorded successes and identified gaps in domains that require spatial 

qualification.  

2.3 Qualitative Reasoning (QR) 

Before now, mathematical progress in the QR community has been substantially more 

sophisticated, without link to tasks and explanations.  This sophistication led to the 

proposal of several new reasoning techniques and ontologies that has forged a link 

between qualitative reasoning and traditional, numeric and analytic techniques.  

Qualitative reasoning is viewed differently by many researchers.  Williams and de 

Kleer (1991) defined QR as an act of developing computational theories of the core 

skills underlying engineers, scientists, and just plain folk‟s ability to hypothesize, test, 

predict, create, optimize, diagnose and debug physical mechanisms. But the most 

direct view is that QR allows inferences to be made in the absence of complete 

knowledge without probabilistic or fuzzy techniques which may rely or arbitrarily 

assigned probability or membership values (Cohn, 1999).  This does not rule out the 

effect of probabilistic and fuzzy techniques in solving real world problems. 
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Qualitative reasoning compares features within an object domain. Qualitatively, one 

does not need to depend on specific values and granularities as obtained in quantitative 

knowledge but uses limited vocabularies to compare two objects, for instance „a is 

smaller than b‟ and „b is smaller than c‟ (Renz and Nebel, 2007).  This is closer to how 

humans represent and reason about commonsense knowledge. Since the knowledge of 

the world is necessarily incomplete and unpredictable in detail (Allen and Ferguson, 

1994), qualitative reasoning happens to be an appropriate reasoning method that a 

computer could adopt to make predictions on the basis of certain assumptions (Allen 

and Ferguson, 1994).   

This comparison approach increases the strength of qualitative reasoning, making it 

seem advantageous over quantitative knowledge with a good number of reasons.  

These advantages (Freksa, 1991; Freksa, 1992) serve as the motivational properties of 

QR and they include: having nice properties of its analytical counterparts; being the 

goal for a reasoning process; serving as frequent input for a reasoning process; being 

cheaper and less informative in a certain sense; being transparent; being easier and 

better for human reasoning; and requiring less computational memory.  QR helps to 

push the use of weak, qualitative information as far as it can go, and to use its failure to 

better understand what additional knowledge is required and how it is best applied. 

2.2.1 Impacts of Qualitative Reasoning 

Qualitative reasoning allows people to draw useful conclusions about physical world 

without sophisticated mathematical models.  It also allows one to work with far less 

data, than would be required when using traditional, purely quantitative methods.  

Escrig (2005) pointed out that it is a necessity for robots operating in unconstrained 

environments and modeling human cognition to require understanding on how this can 

be done.  This need is seen in science and technology generally.   

In robotics, qualitative abstraction mechanism can be used to create a representation of 

space consisting of the circular order of detected landmarks and the relative position of 

walls towards the agent‟s moving direction. The use of this representation, said 

Frommberger (2008a, 2008b), empowers the agent to learn a certain goal-directed 

navigation strategy faster compared to metrical representations. It also facilitates 
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reusing structural knowledge of the world at different locations within the same 

environment. 

2.2.2 Key Principles Governing Qualitative Modeling 

Forbus (2008) highlighted the key principles governing qualitative modeling to 

include: 

i. Discretization 

Discretization is the quantization of continuous properties into entities for 

representation and providing a means of abstraction.  Erwig et al (1999) noted that 

continuous properties can be implemented if they are discretized.  He concluded that 

both the abstract level and the discrete model are necessary.  The essence of systems 

qualitative reasoning is to find ways of representing continuous properties of the world 

by discrete systems of symbols as it will be applied for the modelling of the spatial 

qualification logic. 

ii. Relevance 

Qualitative values are constructed to be relevant for some classes of tasks by imposing 

constraints from the nature of the system and the reasoning to be done.  The relevance 

principle is one way of stating that an idea is useful. 

ii. Ambiguity 

 Predictions (set of qualitative values) resulting from qualitative models (i.e. 

qualitative arithemetic algebra for exploiting transitivity of the ordering relation) are 

often ambiguous, making qualitative models ideal complement to traditional 

mathematical and numerical techniques (Cohn and Hazarika, 2001).  The resulting set 

of qualitative values is the quantity space.  

2.2.3 Limitations of Qualitative Reasoning 

Despite the above advantages of qualitative reasoning, there are a good number of 

misconceptions stating what qualitative reasoning is not.  These misconceptions are 

assumed by some to be the failure of QR and perceived by others as the progress in 

QR community.  Qualitative reasoning is not: 
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i. the eschewal of quantitative information. This was raised in the poverty 

conjecture by Forbus, Nielsen and Faltings (Forbus et al., 1987; Forbus et al., 

1991) which states that “there is no purely qualitative, general purpose 

kinematics”.  This was also pointed out by Cohn (1999) that QSR is potentially 

useful, and that there may be many domains where QR alone is insufficient.  

Cohn‟s point called for the addition of qualitative non-topological information 

like orientation, distance, size and shapes to the topological relations (Randell 

et al, 1992).  Models that have these combinations were also created (Muller, 

1998a, 1998b; Erwig et al, 1999; Bennett et al; 2000). 

ii. the eschewal of sophisticated mathematics:  Although commonsense reasoning 

has been the major focus in QR, its intention is not to segregate or exclude 

more sophisticated mathematical tools, but rather to encourage the most 

appropriate tools for a particular reasoning task and warns or caveats that a 

mathematical tool should not be judged better simply because it provides more 

information.  Also, in some instances, one can get away with surprisingly little 

information and extremely weak inferences, thereby reducing cost and time of 

acquiring more precise information. 

iii. a theory of naivism:  There is no advanced mathematics conception which is 

artless, considered excessively simple without experience and  previous 

experimentation. 

iv. the invention of new physics: The claims made by people due to the fact that 

early researches were tying QR formalisms to existing theories of physics. 

v. just event driven simulation: This is just an adequate characterization of the 

work on Qualitative Simulation - QSIM (Kuipers, 2001; 1994) and some of its 

successors and not to be confused with the entire goal of QR community.  

QSIM is an abstraction of the actual behaviour that predicts the set of possible 

behaviour consistent with a qualitative differential equation of the world. 

2.2.4 Domains highlighting the limits of qualitative reasoning 

Reasoning about dimensionality is a challenge that lead to the conclusion that RCC-8 

and related systems based on C(x,y) are not powerful and therefore impossible without 
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imposing a sort of structure that is qualitative (Cohn, 1999).  Several attempts to solve 

this dimensionality problem has been given: first, by introducing two primitives 

namely the mereological part relation, P(x,y) and a boundary operator, B(x,y) (Galton, 

1996; Gotts, 1996). 

Another attempt to solve this problem yielded the order of magnitude calculi which 

introduce measuring scales that allows one quantity to be described as being much 

larger than another.  This requires summing up many of the former quantities in other 

to surpass the second and much larger quantity.  An example is the Delta calculus 

which introduces a triadic relation, x(>,d)y, meaning x is larger or bigger than y by the 

amount d (Zimmermann and Freksa, 1996). 

Also, the linear quantity spaces used as distances or sizes for measuring representation 

in qualitative reasoning through relative representations like CanConnect(x,y,z).  This 

primitive allows a metric on the extent of regions to be defined (Cohn and Renz, 

2008), with sample domains that require the use of restricted quantification by 

introducing a sorted predicate given.  

The application of qualitative theoretical models developed so far introduces their 

usage with quantitative imprecise data.  The qualitative and quantitative approaches 

are both integrated with the qualitative theories made to replace the hypothetical 

approaches (Escrig, 2005), where qualitative description of landmarks of the 

environment have been obtained. 

2.2.5 Successful Applications of Qualitative and Quantitative Approaches 

2.2.5.1 Bouncing Ball Domain 

The application of qualitative and quantitative approaches in bouncing ball domain 

features the suggestion that the place vocabulary should be embedded in a more 

quantitative analog representation (metric diagram) with the results of qualitative 

spatial reasoning (Forbus, 1981).  This came up as Forbus went on to buttress their 

poverty conjecture.  This must be integrated with other knowledge following the way 

space is broken up in that domain.  This is demonstrated in the FROB project which 

uses quantitative parameter in the qualitative description of motion allowing for 

different simulation to answer question from the bouncing ball domain (Forbus, 1981).  
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Reasons for not using qualitative descriptions only were highlighted to be its difficulty 

resulting from the use of envisioning approach.  Envisioning is the processes of 

generating all possible categories of behaviours for a system.  This can lead to 

combinatorial search and moreso, they are weak models of space.  The combinatorial 

search for a complex system occurs to an exponential number of qualitative states. 

2.2.5.2 Robotic Applications 

The qualitative/quantitative spatio/temporal models which have been theoretically 

developed are integrated for application in robotics. This application centres on the 

navigation in the structured environments of public buildings with two kind of robots: 

Khepera and Pioneer; the automatic construction of mosaic design by using qualitative 

shape recognition of ceramic pieces; and the navigation in an environment similar to 

brain structure with a legged robot (Escrig, 2005). 

It is often said that quantitative borrows from qualitative and not vice versa.  Hence, 

this work concludes in support of the poverty conjecture that qualitative reasoning 

working as a complement with quantitative reasoning makes computation of 

commonsense properties a reality.  Thus, qualitative reasoning does not mean the 

absence of numbers, rather combining reduced sets of numbers with comparative 

approach, which means, inferring as much as possible from minimal information. 

2.3 Reasoning with Spatial Knowledge 

Reasoning with spatial knowledge requires knowing the various components of spatial 

knowledge.  Mennis et al., (2000) highlighted these components in the pyramid 

framework for spatial knowledge shown in figure 2.1.  Spatial knowledge is seen to be 

made up of two major components: data and knowledge.  The knowledge component 

has to do with the taxonomy and partonomy of the object and explains what the object 

is while the data component has to do with the theme (location and time) of the object. 

Although these components of spatial knowledge are both necessary for drawing 

inferences in any efficient and workable system, much research has been done 

concerning them with various controversies about the spatial objects.  The usefulness 

of spatial data where exact information is not available or not easily processed was 

pointed out by Muller (1998b).   
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When is it? 

Where is it? 

What is it? 

Location Time 

What is it 

made of? 

Data 

Component 

Knowledge 

Component 
Object 

Taxonomy Partonomy 

Figure 2.1:  A pyramid framework for spatial knowledge 

(Mennis et al., 2000) 
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Uribe, et al. (2002) also gave a further note that spatial inferences are fundamental to 

human question answering.  Hence, any knowledge based system designed to handle a 

broad range of questions require spatial reasoning. 

Spatial reasoning involving spatial concepts like space and time has brought lack of 

consensus which has generated a lot of problems over the years.  Some of the problems 

of space and time have been identified to include vagueness, uncertainty and 

granularity (Galton, 2009; Cohn and Renz, 2008). Therefore, reasoning with such 

knowledge requires commonsense reasoning since spatial and temporal knowledge are 

aspects of commonsense knowledge (Cohn, 1999).  

One of the lack of consensus was the Leibniz‟s contention against the Newtonian‟s 

view of space (Casati, 1999).  Leibniz contended that:  

“there is no way of identifying a region of space except by referencing 

what is or could be located or take place at that region” 

against the Newtonian‟s view of space that:  

“space is an individual entity in its own right independent of whatever 

entities may inhabit it.” 

In other to investigate spatial qualification, both the space and the spatial objects are 

seen as two inseparable entities, thereby going with Leibniz‟s contention but with a 

time stamp.  It is necessary to look into some of the defined spatial concepts and the 

challenges of spatial reasoning, before moving into the investigation of the spatial 

qualification. 

2.4 Spatial Concepts and Challenges of Spatial Reasoning 

Geographic places are regions in space that are categorized according to some 

commonly agreed upon characteristics.  As social entities, places are said to be of 

interest for individual communities in a certain region and for a particular time span.  

Places can be referred to by names or descriptions.  It is noted by Janowicz (2009) that 

different people may refer to the same place by various names at different times, 

because a place can have more than one name in heterogeneous settings.  A foundation 

for incorporating concepts relating to place into an ontology is given by Bennett and 

Agarwal (2007).  Hence, the place terms are categorized in Linguistic and Logical 

point of view as follows (Bennett and Agarwal, 2007): 
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i. Place-Like Count Nouns:  These are expressions of natural language that 

characterize types of objects considered to be places.  For instance: room, town, 

forest, country, etc.  These instances are capable of locating other objects, 

either by hosting or some more complex mode of spatial constraint.  The 

constraints may be topological inclusion, geometrical containment, 

containment within a concavity, interposition among elements of aggregate, 

location within or among elements of aggregate, containment within a surface 

demarcation and support.  Place-Like Count Nouns are further categorized into 

three, namely, substantive, (example, town, cupboard), spatial (example, 

region, point) and abstract (example, location, position and place). 

ii. Locative Property Phrases: These are predicative expressions which 

characterize the location of an object.  Examples include phrases like „in 

London‟, „on the hill‟, „by the sea-side‟, „between the church and the oak tree‟, 

etc. 

iii. Place-Names:  This is a case where proper names are applied to places.  For 

example, Leed is a city, John is in London. 

iv. Definite Descriptions:  These are phrases that function as complex nominal 

expressions that uniquely identifies a place entity.  Examples are „the library‟, 

„the shed at the end of the garden‟, etc. 

Janowicz (2009) identified three characteristics used for referencing a place to include 

name, type and spatial footprints which confirms a place to be a social construct that 

could be modeled using different paradigms.  This construct is seen in a semi-formal 

ontological framework, where the semantics of concepts like habitat and environment, 

and their relationship with spatial structure of the world are represented (Bennett, 

2010).  

The need to express location information about objects in space called for the 

simplification of mathematical concepts by approximately referring to points without 

measure, that is, without employing the full power of mathematical topology, 

geometry and analysis (Asher and Vieu, 1995).  This approach changed the focus of 

researchers in the field from holding unto the poverty conjecture promulgated by 

Forbus, Nielson and Faltings that: “there is no purely qualitative, general purpose 
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kinematics” (Forbus, Nielsen and Faltings, 1987; Forbus et al., 1991).  The Poverty 

Conjecture has three arguments:  

i. negation by failure, which means failure to find pure qualitative kinematics;  

ii. human performance, that is, failure of the use of diagrams on the simplest 

spatial problems; and 

iii. no total order, that is the inability of quantity spaces to work in more than one 

dimension. 

These arguments led to the combination of weak information about spatial properties.  

An instance of a logical model with such combined information is the Allen‟s interval 

logic.  Allen‟s interval logic is weak on its own except when combined together with 

numbers to provide enormous constraints.  Due to the transitivity of both Allen‟s 

interval logic and numbers, the suspicion of the sparseness of spatial representation in 

higher dimensions led to the conclusion that for spatial reasoning, almost nothing 

weaker than numbers will do.  Hence, the use of the combination approach, Metric 

Diagram/Place Vocabulary - MD/PV model (Forbus, Nielsen and Faltings, 1987).   

The poverty conjecture sees reasoning with commonsense knowledge to involve 

qualitative reasoning and some level of quantitative knowledge.  They concluded by 

suspecting that the space of representations in higher dimensions is sparse and for 

spatial reasoning, nothing less than numbers will do. 

Reasoning with space requires categorization of the granularities of space and their 

relationship.  Several attempts to categorize „place‟ as it relates with other spatial 

concepts as neighbourhood, region, district, area and location have been made (Bennett 

and Agarwal, 2007).  Although place itself may not be permanent over time, the 

objects anchored in such places may be permanent.  This made proper categorization 

of place when modeling spatial objects to become a necessity instead of geo-

referencing it as points (Winter et al, 2010).  This is because geographic places are 

seen as abstract entities used to structure knowledge and to ease communication. 

Following from the poverty conjecture, Qualitative Spatial Reasoning (QSR) got 

challenged to provide calculi that will allow a machine to represent and reason with 

spatial entities of higher dimension, without resorting to the traditional quantitative 

techniques. 
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2.5 Qualitative Spatial Reasoning 

Qualitative Spatial Reasoning (QSR) emerged as a sub-field in Knowledge 

Representation and Reasoning (KRR) and now a full-fledged sub-field in Artificial 

Intelligence (AI) towards the development of qualitative calculi that solves most of the 

reasoning problems (Forbus et al., 1991). Qualitative spatial representations are said to 

be an expressive means of describing relations among features in geometrical space.    

QSR got challenged to provide calculi that will allow machines to represent and reason 

with spatial entities of higher dimension, without resorting to the traditional 

quantitative techniques.  Increased researches in QSR, in an attempt to refute the 

poverty conjecture, has addressed different concepts of space including topology, 

orientation, shape, size and distances (Randell et al, 1992; Cohn, 1999; Freksa, 1992; 

Davis, 2006; Davis, 2011).  

Central to the efficient production of workable systems are Model-Based Systems 

(MBS) and Qualitative Reasoning (QR).  According to Price et al. (2005), MBS and 

QR is already a technology with a wide range of applicability in areas including fault 

detection by model-based prediction, system simulation, process understanding and 

monitoring, explanation of numerical simulations, compositional model based 

diagnosis, reusable systems, variant problems, decision making under uncertainty, 

educational context, etc.  

QR represents our everyday commonsense knowledge about the physical world and 

also the underlying abstracts used by engineers and scientists when they create 

quantitative models (Cohn, 1999).  Frommberger (2008a, 2008b) pointed out that 

qualitative abstraction mechanism can be used to create a representation of space 

consisting of the circular order of detected landmarks and the relative position of walls 

towards the agent‟s moving direction. Also, the use of this representation empowers 

the agent to learn a certain goal-directed navigation strategy faster compared to 

metrical representations, and also facilitates reusing structural knowledge of the world 

at different locations within the same environment.  Frommberger, (2008a) saw this to 

also work with reinforcement learning where spatial constraints are internally provided 

by the input representation and do not need to be acquired separately enabling agents 
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to develop a generally sensible behavior in space that it can reuse at different locations 

within the same world or in other environments. 

2.5.1 Design approaches in Qualitative Spatial Reasoning 

Several approaches are employed in the representation of these spatial models and 

Egenhofer (2010) described some facets to spatial-relation design to include:  

i. Formalization or axiomatic approach 

Formalization has to do with the use of a formal language to express concepts and 

relationships among the concepts. Logical axioms have been proven to be the most 

expressive formalism. Hence, most formalism makes use logic as the representation 

language. 

ii. Conceptual Neighbourhood graphs 

Conceptual neighborhood graphs are used as the primary tool to provide insights about 

the closeness or similarity of the relations.  Two relations are said to be neighbors if a 

continuous transformation can be performed between the two relations without the 

need to go through a third relation.  This captures for each relation those relations that 

are conceptually closest to it.  When people communicate with information systems, a 

foundation for the selection of appropriate natural language terminology is provided by 

conceptual neighborhoods.  Pairs of relations connected directly by an edge correspond 

to transitions that can be obtained by applying topological transformations 

(translations, rotations or scaling) to one or both objects. 

Different types of neighborhood graphs are obtained depending on the type of 

deformation (movement, rotation and aniosotropic size-neutral, isotropic scaling, 

anisotropic and anisotropic scaling to some directions).  In some types of 

deformations, the edges are directed, while in others they are not directed, that is, from 

one relation to the other as the nodes. 

iii. Compositions 

Compositions are needed where a higher-level inferences about combinations of the 

relations need to be performed to derive a query response directly from the stored base 
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relations and also to assess a more complex query of conjunctions of these relations.  

The basic inferences over single relations can be made simply based on the properties 

of the conceptual neighborhood graph, N8 and the 9-intersection, I9, matrices.  This is 

typically written as ri:ri, where ri is a relation without the references to the objects 

involved.  The composition table involving a set of n relations captures all n
2
 

compositions.   This means that for the 8-topological relations we have 64 resulting 

compositions. 

Commonsense reasoning about space and things located in space led to the hole 

trouble (Casati and Varsi, 1997).  This trouble and the need for explicit theory are 

tackled using compositional approach.  Several QSR problems such as path 

consistency problems can be solved based on this composition approach. 

Each of the resulting theories tried to solve one problem with the solution unfolding 

another underlying problem.  This led to the conclusion by Casati and Varzi (1997) 

that with the composition of all the theories, some affinity with common sense (Type 

I) and a suitable degree of formal specification (Type II) might result. 

Problem solving with Qualitative Spatial Reasoning (QSR) involves formalizing one 

type of spatial relations and discussing their attributes; and composing two or more 

spatial relations to obtain a previously unknown relation.  Since qualitative spatial 

representations are said to be an expressive means of describing relations among 

features in geometrical space, our formalism of the logic of spatial qualification 

problem adopts this composition representation design approach.   

2.5.2 Theories for Spatial Reasoning 

Theories about spatial relations can be traced from the definitions by Tarski (1929) to 

present day.  These theories include ontology, mereology, topology, mereo-topology 

and mereogeometry. 

2.5.2.1 Ontology 

Guarino (1998) defined ontology to be a logical theory or set of axioms that account 

for the intended meaning of a formal vocabulary.  Ontologies are specification of 

conceptualization and the corresponding vocabulary used to describe a domain.  
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Ontologies correspond to generalized database schemas.  However, they can be used to 

describe the structure of semantics of much more complex objects than common 

databases and are therefore well-suited for describing heterogeneous distributed and 

semi-structured information sources such as those found on the semantic web.  It is on 

this note that modern knowledge representation and knowledge engineering advocate 

the use of explicit ontologies.  Different kinds of ontologies exist according to their 

level of dependence on a particular task or point of view.  Guarino (1998) highlighted 

some type of ontologies as shown in figure 2.2 as follows:  

 Top-level ontologies which describe very general concepts like space, time, 

matter, object, event, action, etc.  These concepts are independent of a 

particular problem or domain. 

 Domain ontologies and task ontologies which respectively describe the 

vocabulary related to a generic domain (like medicine or automobiles) or a 

generic task or activity (like diagnosing or selling), by specializing the terms 

introduced in the top-level ontology. 

 Application ontologies which describe concepts depending both on a particular 

domain and task.  

According to Forbus (1996), an ontology, whose main goal is to formalize the act of 

building models of physical systems, is said to be central to qualitative reasoning.  

Hence, it is concerned with how to carve up the world, that is, the kind of things they 

are and the sort of relationships that can hold between them.  With this, one can 

interpret the situation or system in terms of the available models.  Ontology is seen as 

the main semantic structure used in annotating metadata in a web page.  This is 

because it represents the meaning of terms in vocabularies and the relationships among 

those terms and they multiply as one tries to capture more of human reasoning.  Hence, 

any spatial and temporal search conditions in the web require ontology of time and 

space for proper handling.  An instance of such dynamic ontology is that of the process 

ontology (Forbus, 1996). There is therefore need to increase the accuracy of an 

ontology.  This can be achieved by: 
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 Developing richer axiomatisation in such a way that exactly the same models 

are obtained, that is, by adopting a richer domain and/or a richer set of relevant 

conceptual relations. 

 Adopting a modal logic.  This allows one to express constraints across worlds 

or just reifying the worlds as ordinary objects of the domain. 

2.5.2.2 Mereology 

This is the theory of parthood (Aiello and Ottens, 2007). In this theory, the classical 

mereology of Lesneiwski is the basis for the axiomatization, where the parthood 

relations are expressed.  An example is the relation „x overlaps y‟ expressed as: 

O(x,y) def z[P(z,x)  P(z,y)] 

The parthood relation satisfying the axioms of closed extensional mereology is used to 

describe mereology.   

2.5.2.3 Topology 

This is a first-order theory that deals with regions in a topological manner.  Topology 

is said to be truly a more basic and more general framework subsuming mereology in 

its entirety (Casati and Varzi, 1997), where the relation of connection takes over 

overlapping and parthood as special cases.  The subsumption of mereology to topology 

gives birth to the relation of topological connection („C‟), where one thing is part of 

another.  One thing is said to be part of another, if everything connected to the first is 

also connected to the second: 

P(x,y) =df z (C(z,x)  C(z,y) 

Topological theories may be boundary-tolerant or boundary-free.  It can also be via n-

intersections.  Topology is the theory of how things are connected, that is, how a set of 

entities might interact with one another.  There are two topological models (9-

intersection and region-connection calculus – RCC) that yield the same topological 

relations when considering any two simple regions.  The 9-intersection defines binary 

topological relations between two simple regions, A and B with their interiors, 

boundaries and exteriors to be A
0
, A, A

-
 respectively for A and B

0
, B, B

- 



UNIV
ERSITY

 O
F I

BADAN LI
BRARY 

24 

 

respectively for B (Egenhofer, 2010).  The intersection of these six object parts 

describe a topological relation and can be concisely represented by a 3  3 matrix 

equation below, called the 9-intersection. 

 I9 =




























BABABA

BABABA

BABABA

0

0

0000

 

By considering the values empty () and non-empty () for each of the nine 

intersections, 2
9
 = 512 binary topological relations can be distinguished.  Eight of these 

512 relations can be realized between two regions embedded in 
2
 and subsequently 

referred to as the 
2
 – relations.  The primitive binary relations for the Region 

Connection Calculus are given in the next section. This 9-intersection and the region-

connection calculus give rise to the eight topological relations between two regions in 


2
 as shown in figure 2.3. 

RCC-8 is seen to play very important role in spatial representation and reasoning 

(Wolter and Zakharyaschev, 2000b; 2002).  An ontologically well founded logical 

language for describing spatial, temporal and material properties of the physical world 

is also presented (Bennett, 2001a).  Current models for topological relations fall 

primarily into the two major categories those based on connection and those based on 

intersection (Egenhofer, 2010). 

2.5.2.4 Mereotopology 

Mereotopology is the study of part-whole and topological relationships for describing 

qualitative aspects of region connection.  This is the combination of a spatial theory as 

a topological base along with a temporal theory to formulate a spatiotemporal 

interaction between the two theories. Mereotopological concepts are incorporated into 

calculus of relations between regions.  This theory follows a particular syntax: 

spatiotemporal operators precede the regions they operate upon (prefix notation) while 

temporal operators come in-between the regions they operate upon (infix notation). 
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


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

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Disjoint, DC(x,y) Meet, E(x,y) Overlap, PO(x,y) Equal, EQ(x,y) 

coveredBy, TPP(x,y) Inside, NTPP(x,y) Covers, TPPi(x,y) Contains, NTPP(x,y) 

Figure 2.3: Eight topological relations between two regions in 
2 
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Although the absence of boundary entity has been considered by many as a serious 

flaw in mereotopology (Muller, 1998a), it does not always entail problems in most 

Top-level ontology 

Application ontology 

Figure 2.2: Types of ontology 

Domain ontology Task ontology 
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theories as it preserves certain homogeneity of the formulations of problems tackled by 

those theories.  

The relation of strong connection between regions is used to describe topology by 

means of a “simple region” predicated “congruence” primitive whose axioms exploit 

Tarski‟s analogy between points and spheres describes morphology.  This gives the 

three distinct primitives used in describing mereology, topology and morphological 

properties of the logical theory of space with tridimensional regions (Borgo et al., 

1996).  Also, spheres are defined and they make it possible to analyse Tarski‟s 

mereomorphological theory within their framework as shown below: 

 SPHx = df SRx  y(CGxy  POxy  SR(x-y)). 

The notion of an egg-yolk is used to present a calculus for representing and reasoning 

about the location of rigid objects which may move within some regions.  An 

axiomatization for congruence has both a mereological primitive and a morphological 

one. 

2.5.2.5 Mereogeometry 

This theory combines geometry and mereology in a simpler way and expresses it in 

First-Order axioms.  It was developed to provide a secure ontological foundation for 

theories of spatial information and is directly inspired by Tarski‟s Geometric of Solids.  

The theory of parthood and the concept of spheres are taken as primitive for Tarski‟s 

geometry of solid (Bennett, 2001b). This theory builds on Lesneiwski‟s mereology 

following Tarski to introduce the sphere predicate, S(x) while defining the relations of 

external tangency (ET), internal tangency (IT), external diametricity (ED), internal 

diametricity (ID) and concentricity (x y) (Bennett et al., 2000).  

Due to the availability of a categorical interpretation in terms of Cartesian fields of R, 

more traditional representations that employ this classical model of space are readily 

compatible.  The limitation of region based geometry - RBG is that it can only deal 

with a domain of entities having a given fixed dimension.  The second-order nature 

poses several problems for automated reasoning and requires more computationally 

effective representations to function in some applications. 
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2.5.3 Aspects of Qualitative Spatial Reasoning 

Qualitative spatial reasoning is applicable for reasoning in two major aspects of the 

physical world namely: temporal and spatial. 

2.5.3.1 Temporal Reasoning 

Many applications involving automated reasoning see time as a very crucial concept 

(Russel and Norvig, 2003).  Since the world is dynamic (that is, constantly changing), 

the need to reason about time arises as events occur at different states of the world.  

These needs are seen in several AI domains such as that of question answering and 

also in task explanation and prediction (Vila, 1994).  The efficacy of time has been 

explored as the theory of recurrence in time is defined by Koomen (1989) and the 

temporal properties of repetitive entities are also stated and proven (Akinkunmi and 

Osofisan, 2004). 

Most of the systems involving temporal reasoning today follow existing formalism 

with well-defined semantics like the Allen‟s interval logic (Allen, 1984).  Temporal 

reasoning owes so much to the work of McCarthy and Hayes on situation calculus 

(McCarthy and Hayes, 1969) which is actually its starting point.  Situation calculus is a 

point-based temporal logic with a branching time model.  Situation calculus sees only 

one agent at a time in the world without any external intuition about actions and events 

(Allen and Ferguson, 1994).  The concept of time have been analysed by many. 

McDermott (1982) viewed time as an infinite collection of states or time points.  

Temporal entities were divided into facts and events where facts are true over a single 

point and events true over a time interval.  Despite the fact that it was challenged by 

Galton (1994) by showing the existence of events that are instantaneous in the domain 

of bodies moving in space, was partially supported by Allen who considered time 

intervals to be the primitive time units in his trichotomy of temporal entities (that is, 

properties, events and processes).   

Temporal logic is needed to describe any system of rules and symbolism for 

representing and reasoning about propositions qualified in terms of times (McDermott, 

1982), for example, “I am always hungry”, “I will eventually be hungry”, “I will be 



UNIV
ERSITY

 O
F I

BADAN LI
BRARY 

28 

 

hungry until I eat something.”  Temporal Logic has ability to reason about time line: 

Single or Multiple time lines.   

Reasoning about multiple time lines or acting unpredictably is what led to the 

branching logic. For example, representing statements like “there is a possibility that 

he will stay hungry forever” or “there is possibility that eventually I am no longer 

hungry” will require branching-logic.  Attempts to provide temporal calculi are based 

on these time structures: time point or time interval. 

2.5.3.1.1 A point-based system 

A typical point-based time structure is an ordering (P, ≼), where P is a set of points, 

and ≼ is a relation that (partially or totally) orders P.  Ma and Knight (1994) pointed 

out that time points are needed for both theoretical and practical modeling of temporal 

phenomena.  From point-based systems, interval may be defined as derived temporal 

object, either as sets of points or as ordered pair of points (Ladkin, 1987).  Defining 

intervals as objects derived from points may lead to the so called dividing instant 

problem (Villa, 1994; Ma and Knight, 2003). 

2.5.3.1.2 Interval-based system 

This system is believed by many researchers to have been more suitable for 

representing commonsense temporal knowledge, notably in the domain of linguistics 

and AI.  Allen‟s temporal theory is a representative of the interval-based system which 

posits a set of intervals as the primitive temporal entities.  Allen introduced the 13 

binary relations between intervals (equal, meets, starts, ends, contains, overlaps, before 

and their inverses) (Allen, 1983).  These jointly exhaustive pairwise disjoint (JEPD) 

base relations over intervals have been employed in most of the spatio-temporal 

models. 

This allows for non-trivial interpretations, which may involve linear flow of time, at 

every moment where the future is fixed or at different evolution of history.  Talking 

about history H, formulas are evaluated relative to pairs (h,w) consisting of an actual 

history, hH and a time point wh.  Temporal operators are interpreted along actual 

history, h as in a linear time framework, with the modal operators quantifying over the 
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set of all possible histories H(w)={hH: wh} coming through the time point, w,  

where w is said to be the branching-time (Wolter and Zakharyaschev, 2002).  Several 

branching-time logics have been defined: Linear Time Logic (LTL), Computational 

Tree Logic (CTL) and the extended Computational Tree Logic (CTL*) (Katoen, 2007).   

CTL is branching-time logic with a tree-like structure of the model of time in which 

the future is not determined or has many possibilities.  CTL* is the superset of CTL 

and LTL and combines path quantifiers and temporal operators.  Its formal semantics 

is defined with respect to a given Kripke structure. 

2.5.3.2 Qualitative Spatial Calculi 

Based on the theories discussed in section 2.5.2, several calculi have been constructed 

to handle spatial concepts such as shapes, size, distance, orientation, topology and 

time.  Qualitative spatial calculi are well-suited to bridge between quantitative scene 

information observable by an agent and linguistic descriptions of object configurations 

(Galton, 1994). This is because qualitative spatial calculi abstract from metrical data 

by summarizing similar quantitative states into one qualitative characterization, 

thereby, revealing the relative nature of spatial information, that is, properties of 

objects are compared to one another rather than comparing the properties to some 

external scale. (Dylla et al, 2007).  Some of these calculi due to their relevance and 

common usage are discussed below. 

2.5.3.2.1 Region Connection Calculus (RCC): 

The Region Connection Calculus (RCC) is a topological approach to qualitative spatial 

representation and reasoning where spatial regions are non-empty regular subsets of a 

topological space. Relationships between spatial regions are defined in terms of the 

relation C(a. b), read as “a connects with b”. In the standard interpretation of the RCC 

theory, the relation C(a, b) is true if and only if the closure of region a is connected to 

the closure of region b, i.e., if the closures of the two regions share a common point.  
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Regions themselves do not have to be internally connected, i.e., a region may consist 

of different disconnected parts, and regions are allowed to have holes. The domain of 

Figure 2.4: Relations among spheres defined by Tarski (Bennett, 2001b) 
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spatial variables (denoted as X. Y, Z) is the set of all spatial regions of the topological 

space (Egenhofer and Franzosa, 1991).  

Randell, Cui and Cohn introduced the Region Connection Calculus (Randell et all, 

1992) with the aim of reasoning based on the primitive binary relation „x connects y‟, 

C(x,y).  RCC relations are defined in terms of the connection, C.  The RCC theory is 

formulated in first-order predicate calculus. RCC-8 is a set of eight jointly exhaustive 

and pair wise disjoint (JEPD) relations, called base relations, definable in the RCC 

theory, denoted as DC, EC, PO, EQ, TPP, NTPP, TPP-
1
, and NTPP-

1
, with their 

meaning as DisConnected, Externally Connected, Partial Overlap, EQual, Tangential 

Proper Part, Non-Tangential Proper Part, and their converses. Exactly one of these 

relations holds between any two spatial regions. These relations can be given a 

straightforward topological interpretation in terms of point-set topology.  Examples for 

the RCC-8 relations are shown in Table 2.1.  

RCC-5 is a set of five JEPD relations definable in the RCC theory on a coarser level of 

granularity than RCC-8.  For RCC-5, the boundary of a region is not taken into 

account, i.e., one does not distinguish between DC and EC and between TPP and 

NTPP. These relations were combined in the RCC-5 base relations with DR for 

DiscRete and PP for Proper Part, respectively. Thus, RCC-5 contains the five base 

relations DR, PO, PP, PP-‟, and EQ. From this primitive binary relation, several other 

binary relations (Bogaert, 2008) sprang up as shown in Table 2.1. 

This set of relations is also known as RCC-8.  There are other sets of extended RCC 

relations resulting from the combination of RCC-8 and the earlier version, RCC-5.  

Another extension of the RCC-8 relations is the Boolean Region Connection Calculus 

(BRCC-8) which combines the region variables using the Boolean operators ,  and 

.  BRCC-8 behaves like the RCC-s computationally with BRCC-8 considering the 

union, intersection and negation of regions which RCC did not. 
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Table 2.1: Relations Defining the Region Connection Calculus (RCC)  

       (Randell et al, 1992; Bogaert, 2008) 

Relation Condition Symbol Meaning 

x is disconnected 

from y 

C(x,y) DC(x,y) x and y are not 

connected 

x is a part of y z[X(z,x)C(z,y)] P(x,y) Every region connected 

to x is connected to y 

x is proper part of y P(x,y)P(y,x) PP(x,y) x is part of y but not 

equal to it 

x is identical with y P(x,y)=P(y,x) EQ(x,y) Each of x and y is part 

of the other 

x overlaps y z[P(z,x)P(z,y)] O(x,y) Some region is part of 

both x and y  

x is discrete from y O(x,y) DR(x,y) x does not overlap y 

x partially overlaps y O(x,y)P(x,y)O(y,x) PO(x,y) x overlaps y but neither 

is part of the other 

x is externally 

connected to y 

C(x,y)O(x,y) EC(x,y) x and y are connected 

but do not overlap 

x is tangential proper 

part of y 

PP(x,y)z[EC(z,x) 

EC(z,y)] 

TPP(x,p) x is a proper part of y 

and some region is EC 

to both 

x is a nontagential 

proper part of y 

PP(x,y)z[EC(z,x) 

EC(z,y)] 

NTPP(x,p) x is a proper part of y 

but not TPP 
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However, such an encoding does not lead to efficient decision procedures. In order to 

overcome this problem, Bennett used different encoding of RCC-8 in modal logic. 

Based on this encoding, the fact that reasoning is NP-complete in general and 

identifies a maximal tractable subset of the relations in RCC-8 that contains all base 

relations is proven. Furthermore, path consistency is shown as being sufficient for 

deciding consistency for this subset (Renz and Nebel, 1999). 

2.5.3.2.2 Anchoring Relations 

Several approaches have been adopted in the qualitative spatial reasoning field to 

represent vague or uncertain information concerning spatial location.  Amongst these 

is the anchoring relations proposed by Galton and Hood (2005) to express location 

information about objects in information space.  These relations enable one to state 

exactly what is known about the spatial location of an object without forcing people to 

identify the fuzzy sets. 

Anchoring according to Galton and Hood means referencing spatial information 

without assignment of precise coordinates to its location.  This does not eliminate 

vagueness forcefully by approximating precise regions.  Galton and Hood pointed out 

that other approaches are based on faulty assumptions that vague objects can be 

associated with regions representing their spatial extent.  Some of these approaches 

include the rough/fuzzy sets, egg-yolk and super valuation (Cohn et al., 1997).  All 

these establish the nature of the relationship between information space and precise 

space. 

Two sets of relationship between an entity in information space and an exact spatial 

location in the ontology of anchoring are allowed, including: 

 That which represents information space:  The information space contains all 

the various geographical objects and phenomena of interest.   

 That which represents precise space: The precise space contains points and 

various kinds of points which can stand on their own as precise spatial location. 

The object in information space may be anchored to the locations in precise space 

using the following relations: 
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(i) Anchored in 

(ii) Anchored over 

(iii) Anchored outside 

(iv) Anchored alongside 

 

Through these relations location information about objects in information space can be 

expressed without being embarrassed by the uncertainty or vagueness that unavoidably 

attends much of our day-to-day information.  With these anchoring relations (Galton & 

Hood, 2005), one can state exactly what is known regarding the spatial location of an 

object without forcing people to identify that location with either a region in precise 

space or any mathematical construct from such regions. 

2.5.3.2.3 Direction Calculus 

Bogaert pointed out that despite the qualitative description of directions used by people 

in their day-to-day communications (such as „west of‟, „behind‟, „on top of‟, etc.), the 

directional relations of an object to another object can be defined in terms of three 

basic concepts, namely: a primary object, a reference object and a certain frame of 

reference (Bogaert, 2008; Clementini et al, 1997). 

These concepts are equally applicable to our location information prior our spatial 

qualification as will be seen in the later sections of this thesis.  Hence, most directional 

relations are ternary due to the introduction of the frame of reference unlike the 

topological relations (Cohn and Renz, 2007) earlier discussed.  A frame of reference 

may be extrinsic, intrinsic and deictic (Bogaert, 2008; Retz-Schmidt, 1988), but our 

emphasis in this work will be on the deictic frame where the system is imposed by the 

point of view from which the reference object is seen. 

Examples of directional relations include the cardinal direction calculi or relations 

which in most cases are extended by a qualitative value‟0‟ for closed points or 

directional representation.  This may be cone-based directional relations or projection 

based directional relations. 
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Directions in geographic domains, according to Egenhofer (2010b), are referred to as 

cardinal directions, a triple <A,d,B> where A and B are reference and target objects 

respectively and d is a non-empty subset of nine symbols 

{N,S,E,W,NE,SE,SW,NW,O} for north, north-east, east, south-east, south, south-west, 

west, north-west, equator/origin respectively, with semantic motivated by a compass 

rose.  Another example of the directional calculus is the double cross calculus (Freksa, 

1992). 

Two different methods for determining the different sectors corresponding to the single 

directions include the cone-based method and the projection-based method (Frank, 

1991). The projection-based approach allows us to represent the nine different 

relations (n, ne, e, se, s, sw, w, nw, eq) in terms of the point algebra by specifying a 

point algebraic relation for each of the two axes separately.  Renz and Mitra (2004) 

proposed and analysed a more generalized calculi that is based on a number of n lines: 

the star calculus shown in figure 2.6 where multiple granularities are allowed over an 

intrinsic reference frame. Star calculus can be used for representing and reasoning 

about qualitative directions of arbitrary granularity.  Freksa (1992) further developed 

the point-based approach referred to as the double-cross calculus, which defines the 

direction of a located point to a reference point with respect to a perspective point. 

2.5.3.2.5 Distance Calculus 

Distance relations can be relative or absolute.  In other words, distances can be named 

and compared using relative distance relations or absolute distance relation.  While 

relative distance relations are purely qualitative, absolute distance relations can be both 

qualitative and quantitative.  Looking closely at the qualitative absolute distance 

relations, are they truly qualitative?  The relative distance relations, can they really 

hold without prior knowledge?  This will be expounded in the coming section of this 

thesis. 

Renz and Nebel (1999) pointed out situations where directional qualitative distances 

can lead to difficulties despite the fact that reasoning in distance calculi is often based 

on points rather than regions or lines.   This led to the combination of directional and 

distance information referred to as positional/location information (Hazarika, 2005). 
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2.5.3.2.6 Positional Calculus 

Positional calculus is employed in reasoning.  It combines direction calculus and 

distance calculus.  An instance of positional calculus are seen where information given 

by cardinal directions and two distance relations are combined (Clementini, 1997).  Isli 

and Moratz (1999) also combined relative directions with relative distance. 

2.5.3.2.7 Qualitative Trajectory Calculus (QTC) 

Qualitative trajectory calculus came into describe the level of disjointness between two 

moving objects (Van de Wedge, 2004) and is used for the representation of and 

reasoning about movements of objects in a qualitative framework.  QTC features the 

exploration of trajectories of moving (point-like) objects with concentration on the 

shortest path of spatially disjoint object (assuming the object doesn‟t change form). 

Objects are viewed as points with the direction and orientation relation determining the 

positional information of the object.  Two types of a moving object, namely: objects 

with free trajectory and objects with constrained trajectory were considered as all 

traffic movements are bounded by a network. 

Apart from the movement of the object, relative speed of the moving object is another 

function that qualitatively represents the movement or transition of the object in 

consideration. The movement of two objects restricted to a line, be it straight or 

otherwise is viewed and the assumption that R1 and R2 only differ in one character 

that cannot change continuously between both states without passing through an 

intermediate qualitative value, and then the conceptual distance between R1 and R2 

composing of sub-distances.  This follows the assumption that R1 and R2 differ in 

many characters, and then the conceptual distance is the sum of the sub-distances 

determined for each individual character. 

 Also, considering two objects that can move together freely in a plane, the landmark 

to describe the qualitative relations as seen in Qualitative trajectory Calculus (QTCB) is 

the distance at time t between the two objects (Bogaert, 2008). The following 

parameters were considered necessary: the position of an object x at time t; the 

distance between two positions u and v; and the speed of x at time t.  Despite the use of 

these parameters, the need for the logic that can tell the possibility of an object 
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reaching another location from former was not seen or constructed.  The qualitative 

trajectory calculus (QTC) enables comparisons between positions of objects at 

different time points to be defined with distance and speed constraints as the base 

primitives (Van De Wedge et al., 2006).  QTC relations simplify continuous 

movements of objects in the real world to be:  

(i) Only objects in a disjoint relation 

(ii) Definition at an exact movement in time with duration (i.e. no time points) 

(iii) Only relations between two spatial entities with respect to a certain frame 

of reference 

(iv) Generalized objects into points. 

The above abstractions simplify complex motion problems without having significant 

disadvantages (Van de Wedge, 2004).  

QTC are of two types, the Qualitative Trajectory Calculus – Basic (QTCB) and the 

Qualitative Trajectory Calculus – Double Cross (QTCC) depending on the level of 

detail and the number of spatial dimensions (Van de Wedge, 2006; Van de Wedge et 

al, 2005).  In their work, two objects are considered: one is fixed in time and the other 

varies over time. Motion is defined with relations including: move toward, move away 

from and stable.  This formalism did not give general motion relations, thereby still 

having the need for a general motion axiom. 

In QTCC, objects have a tangential trajectory and combines distance and orientation 

information.  This is otherwise referred to as the positional calculus while QTCB is a 

pure distance calculus.  

2.5.3.3 Spatiotemporal Representations and Reasoning 

In other to see space and time as closely connected spatial concepts due to occurrence 

of change, the combined reasoning approach where spatial and temporal information 

are used sprang up as a subfield in Qualitative Reasoning.  According to Bogaert 

(2008), change can be discontinuous or continuous.  An instantaneous alteration in the 

value of a property of an object from one value to another depicts a discontinuous 

change.  On the other hand where the property of an object varies as a function of time 

we refer to this as a continuous change, e.g. temperature change during the day. 
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Two types of spatial entities are identified to be, life of a spatial entity and the position 

and geometric form of a spatial entity.  The former can appear, split, merge or 

disappear while the later can move or appear to move while or while not 

simultaneously changing its form. On close examination one may say that the first type 

acts under natural influences while the second is time dependent.  

2.5.3.3.1 Qualitative Spatial Change 

Substantial progress has been made in QSR about motion (Forbus et al., 1991; Muller, 

1998a; Muller, 1998b).  From an absolutist view, motion is a change of value of a 

location function, usually assumed to be continuous.  This assumption is integrated in 

the different qualitative calculi (Cohn and Hazarika, 2001; Muller, 1998b, Gerevini 

and Nebel, 2002; Cole and Hornsby, 2005; Hornsby and Cole, 2007).  Planning 

motions in the presence of uncertainty for any kind of rigid or articulated object 

capable of controlling its motions within a workspace had been a major problem.  

Whenever an object occupies different positions in space at different times, then the 

phenomenon of movement arises (Galton, 1995).  Instances are as seen in a 

manipulator arm, a multi-joint multi-finger hand, a wheeled vehicle, or a free-flying 

vehicle which requires control of its motion. However, in practice, the complexity of 

the motion planning problem augments exponentially with the number of degrees of 

freedom of the robot system.  Motion planning in the presence of uncertainty is one of 

the important problems that need to be solved in order to create autonomous robots, 

that is, robots that can execute tasks in the physical workspace without human 

intervention (automatic) and those that accept high level task descriptions (taskable).  

This uncertainty cannot be handled by some of the model with motion command like 

M=(CS,TC) (Latombe, 1988), which is quantitative and only feature the control 

statement specifying the trajectory along which the controller executing the command 

has to move and the termination condition upon which the controller should terminate 

the motion (Latombe, 1991).  This led to the shift from quantitative to qualitative 

approach (Egenhofer, 2010) 

Qualitative attempts that have been made are categorized into two: that dealing with 

change (environmental change) and that dealing with moving objects.  Most of these 

models are spatiotemporal and are set to deal with imprecise or incomplete information 
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in AI systems (Ibrahim and Tawfik, 1998; Muller, 1998a; Muller, 1998b).  Some of the 

approaches used in describing motion in the literature include the following: 

a. Translation and Rotation Approach 

Qualitative kinematics capable of describing the possible movements of systems of 

rigid objects in a far more general way were formulated within the framework of 

region based geometry (RBG). This was done to show their expressive nature by 

Bennett et al. (2000).  These formulations give qualitative description of rigid body 

motions within constraining environments, where simple motions of linear translation 

and rotation about the centre point of some spheres are specified.  The relation, TAV 

(Translates Along Vector) is defined, with  

TAV(x1, x2, d1, d2)  d[dd2  CG(x1,d1,x2,d)] 

meaning that the translation of a region x1 to the congruent region x2 along a vector is 

defined by the points of two discs d1 and d2. 

Also, the PTAV (translation pathway along a vector) is defined as 

PTAV(x1, x2, d, d2)   d[B(d1,d,d2)]  CG(x1, d1, x2, d) 

and the rotation of a region about a centre point is generally defined as: 

 Rot(x,y,s)  S(s)  CG(x,s; y,s) 

The rotation of an object within some confining environment is defined as  

RotOrd(a,c,c,s)  Rot(a,b,s)  Rot(b,c,s)  a,b,c[CG{a,b,c,s}  EC(a,s)   

    EC(b,s)  EC(c,s)  CG(a,a; b,b)  CG(b,b; c,c)  

 t[EC(t,s)  IT(b,t)   O(t,a)  O(t,c)]] 

Using the defined theories, a model of physical environments useful for reasoning 

about motions of rigid objects was built. Bennett et al. (2000) viewed the following 

questions in their model: 

(i) Can a rigid body move between two locations within a confining environment? 

(ii) If yes, what is a possible path between the two locations? 
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They defined the linear translation within (LTW) relation to be: 

LTW(x1,x2,y)  d1d2[TAV(x1,x2,d1,d2)  x [PTAV(x1,x,d1,d2) 

 → P(x,y)]] 

This model is limited to robotic applications, as continuous motions cannot be reduced 

to a series of linear translations and rotations. 

b. Historical Examination Approach 

Muller (1998a, 1998b), in his work, combined RCC and Allen‟s Interval Logic to 

define motion by examining the relationships between histories at two consecutive 

time intervals and identifies classes of motion that may be true as regions move 

accordingly.  He did this by presenting the study of motion from the point of view of 

qualitative theory and the representation of human spatial knowledge in a 

computational perspective. 

Muller saw spatial data as being useful in context where exact information are not 

available or not easily processed.  This further shows QSR as a subfield of AI that 

emerged to focus on problems arising from quantitative data, which are remote to 

human cognition and experience but obstacle to human-computer communication. The 

work formally models relations between moving entities which are the properties of 

space and time.  Several categories of motion that can be useful in a quantitative 

context are expressed in the model.  The characterization of motion described by the 

verbs considered in this model shows the isolation of three main features, namely: a 

polarity, a phase of the motion which the verb semantics focuses; the topological 

relation between two entities related by the motion event during the phase defined by 

the polarity of motion; and the change of this topological relation during the motion.  

The combination of these features yielded six non-empty classes of motion verbs: 

internal/initial, internal/final, contact/final, internal/median, medians with change, and 

non-topological medians. 

Based on some of the defined spatio-temporal concepts, Muller defined six classes of 

motion to be: LEAVE, REACH, HIT, CROSS, INTERNAL and EXTERNAL.  Their 

formal representations are as follows: 
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(i) REACHzxy = TEMP_IN ^ FINISH 

(ii) LEAVE = TEMP_IN ^ START 

(iii) INTERNAL = PP 

(iv) HIT = EC ^ x1,y1 [(Px1 ^ Py1 ^ ECx1y1 )→ (FINISHx1z ^ 

FINISHy1z)] 

(v) EXTERNAL = Cxy 

(vi) CROSSzxy = z1,z2 (z=z1+z2 ^ MEETSz1z2 ^ REACHz1xy ^ 

LEAVEz2xy) 

c. Oriented Curves 

Eschenbach et al. (1999) also reported the application of oriented curves (that is, 

geometric specification of arrows of maps or diagrams, or any other linear and directed 

device in diagrammatic reasoning) on the course of motion or a given trajectory of an 

object.  An oriented curve represents both the collection of the positions occupied by 

the moving object and the order of occupation of the places.   

Eschenebach et al (1999) saw trajectory objects to exhibit several spatial properties: 

they are connected, they have shape, do not branch and are directed.  The successive 

positions occupied by the objects in the course of its motion are represented as points.  

However, this cannot represent walking in contrast to running, which is the reason 

representations of trajectories of moving objects are traditionally based on mappings 

from time to space.  Simultaneity is the only temporal notion needed to reason about 

the possibilities of moving objects meeting, but not explicitly represented. 

Some of the reviewed qualitative spatial and temporal calculi, their relations with 

examples are summarised in table 2.2 with corresponding citations. 

 

 



UNIV
ERSITY

 O
F I

BADAN LI
BRARY 

42 

 

 

 

Table 2.2: Qualitative Spatial and temporal Calculi Reviewed 

Citations Calculi Relations Examples 

(Freksa, 1992) Star, Double cross, 

cardinal direction 

direction  left, above,… 

(Bogaert, 2008) Point, relative 

distance 

distance far, near,…  

(Borgo et al., 1996) Size size large, tiny,… 

(Carsati and Varzi, 1997) Shape shape oval, convex,… 

(Randell et al. 1992) RCC-5, RCC-8 topology touch, inside,… 

(Van de Wedge et al., 

2004; Muller, 1998a) 

QTC Motion reach, leave, 

hit,… 

 (Allen, 1983) Allen Interval 

logic 

Interval rel. before, after, … 

 (Galton and Hood, 2005) Anchoring 

relations 

Anchoring  around, within 
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2.6 Qualitative Spatial Reasoning: Gaps and Way Forward 

The capabilities of qualitative reasoning in solving most commonsense reasoning 

problems with partial or incomplete information were addressed (Cohn and Hazarika, 

2005; Uribe et al, 2002; Forbus, 1995).  Most of this intuitive and informal knowledge 

are qualitatively formalized or modeled (Frommberger, 2008a, 2008b; Erwig et al, 

1999). 

While most of the literatures argue for qualitative reasoning, others who desired 

qualitative approach to handle the shortcomings of quantitative reasoning keep 

experiencing challenges that make them think that qualitative reasoning alone cannot 

actually model all the commonsense problems in all domains.  Forbus (2008) stated 

that qualitative reasoning (QR) does not only represent commonsense knowledge but 

the underlying abstractions used by engineers and scientists when they create 

quantitative models.  QR utilizes discrete quantity spaces and this discretization is 

relevant to the behavior being modeled.  This means that very little quantity space can 

be useful to reason qualitatively.  An example is a finite quantity space, which is a 

totally ordered set of symbolic landmark values (zero and positive and negative 

infinity) representing qualitatively important values (Kuipers, 2001).   

Several aspects of Qualitative spatial reasoning depends on the angle at which it is 

viewed, that is, the way one has chosen to describe the relationship between the spatial 

entities (Cohn and Renz, 2008; Egenhofer, 2010).  These aspects of qualitative spatial 

reasoning include ontology (Guarino, 1998), topology (Cohn et al, 1997), orientation 

(Freksa, 1991), distance (Van de Wedge et al 2004; Van de Wedge et al 2006), size 

and shapes (Bennett et al., 2000).  Hence, the proposed logical theory will also adopt 

the use of qualitative approach and it does not also mean the avoidance of quantitative 

approach since discrete quantities such as distances and time stamps will still be very 

useful in the logical model.  In the next section, this research is taking a walk around 

the existing logical theories in literatures in other to know the most suitable for spatial 

qualification problems. 

2.7 Logical Theories 

Generally, logic is accepted to be the formal method of analyzing and representing any 

valid argument type using its language (grammar and symbolism).  The use of any 
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logical language to represent sentences of any form of argument makes its content 

usable in formal inference.  Formalization means producing the logical forms of 

argument by translating English sentences into the language of the logic. These 

sentences are referred to as axioms and/or formal theories and their combination gives 

what is referred to as the logical system or formal theory. 

Through the set of axioms, a resolution-based module has proven that a question 

logically follows from the answer.  An instance of this proof is given in the first order 

representation and reasoning for natural language as it applies to question answering 

(Uribe et al, 2002).  The use of logic is further seen while showing the relationship 

between tokens and types and their usage in highlighting the expressive limits of 

reified theories (Akinkunmi, 2000).  The role and place of logic is as shown in the 

static and dynamic aspects of a semantic web layer cake given in figure 2.7. 

2.7.1 Reasons for Using Logical Theories 

Pan (2007) reported in his work that logic specifically provides a sound computational 

basis for the verifiability, inference, and expressiveness requirements.  Logic helps to 

characterize the difference between valid and invalid arguments.  This means that, 

logic allows one to distinguish correct reasoning from poor reasoning, thereby, aiding 

one‟s correct reasoning.  Without correct reasoning, one does not have a viable means 

for knowing the truth or arriving at sound beliefs.  No wonder why it plays an 

important role in the semantic web (Pan, 2005; Pan and Hobbs, 2006; Pan et al., 

2006a, 2006b, 2007). A logical system for a language is a set of axioms and rules 

designed to prove exactly the valid statements in the language.  Several formal 

languages/logical representational languages have been used for reasoning within the 

spatial domains.  Some of the logical languages relevant to this study are discussed in 

the following section. 

2.8 Logical/Formal Languages 

Logical languages are particularly suitable for use as knowledge representation 

languages for AI because they provide precise means for determining what conclusions 

followed from available facts and rules (Ramsay, 1989).  Examples of these logical 

languages as it applies to the study amongst the numerous ones are discussed in the 

following sub-sections. 
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2.8.1 First Order Logic (FOL) 

First Order Logic amidst other representational languages has a flexible structure 

which permits accurate representation of natural language reasonably well.  Also, it 

offers a formal approach to reasoning that has a sound theoretic foundation. First Order 

Logic is an expressive formal language that allows for powerful reasoning and can 

manage incomplete knowledge.  Models in first order logic (FOL) require total 

functions, that is, there must be a value for every input tuple. 

2.8.1.1 Syntax of First Order Logic 

In the context of this language, symbols stand for objects, relations and functions in the 

universe.  Symbols could be constants which represent the objects, predicates 

representing the relations and the functions.  First order logic (FOL) follows the 

following syntax (Russel and Norvig, 2003): 

 Sentence  Atomic Sentence | (Sentence Connective Sentence) 

    | Quantifier Variable Sentence |   Sentence 

 Atomic Sentence  Predicate (Term, …) | Term = Term 

 Term   Function (Term, …) | Constant |  Variable 

 Connective  ||| 

 Quantifier  | 

 Constant  A|X1|John|… 

 Variable  a|x|s|… 

 Predicate  Before|HasColor|Raining|… 

 Function  Mother | Leftleg … 

From the syntax, it could be noticed that there are two standard quantifiers, namely, for 

all () and there exist quantifiers ().  A term is a logical expression that refers to an 

object.   Constant symbols are terms.  Formally,  f(t1, …, tn) is considered as a term, the 

function symbol f refers to some functions in the model.  Atomic sentences are formed 

from the predicate symbol followed by a parenthesized list of terms.  An atomic 

sentence is true in a given model, under a given interpretation if the relation referred to 
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by the predicate symbol holds among the objects referred by the arguments.  Complex 

sentences use logical connectives to construct more complex sentences. 

This gives rise to the following formal definitions: 

Term:  

(i) Constants, variables are terms 

(ii) If f is a function of k variables and t1, …, tk are terms then f(t1, …, tk) is a 

term. 

Formula: 

(i) If P is a k-ary predicate and t1, …, tk are terms, it implies that           P(t1, 

t2, …, tk) is a formula 

(ii) If A, B are formulae then A B, AB, A are formulae. 

2.8.1.2 Semantics of First Order Logic 

According to Paulson (2002), an interpretation of a language maps its function 

symbols to actual functions, and its relation symbols to actual relations. For example, 

the predicate symbol „student‟ could be mapped to the set of all students currently 

enrolled at the University. 

Let L be a first-order language. An interpretation I of L is a pair (D, I). Here D is a 

nonempty set, the domain or universe. The operation I maps symbols to individuals, 

functions or sets: 

(i)     if c is a constant symbol (of L) then I [c]  D 

(ii)    if f is an n-place function symbol then I [ f ]  Dn  D (which means I [ f ] 

is an n-place function on D) 

(iii) if P is an n-place relation symbol then I [P]  Dn (which means I [P] is an 

n-place relation on D). 
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He highlighted various ways of talking about the values of variables under an 

interpretation. One way is to „invent‟ a constant symbol for every element of D. More 

natural is to represent the values of variables using an environment, known as a 

valuation.  A valuation V of L over D is a function from the variables of L into D. 

Writing IV [t] for the value of t with respect to I and V, it is defined by 

 IV [x] def = V(x) if x is a variable 

 IV [c] def = I [c] 

 IV [ f (t1, . . . , tn)] def = I [ f ](IV [t1], . . . , IV [tn]) 

Writing V{a/x} for the valuation that maps x to a is otherwise the same as V. Typically, 

a valuation is modified one variable at a time. This gives a semantic analogue of 

substitution for the variable x. 

2.8.2 Modal Logic 

Modal logic (ML) is a better tool for talking about topologies.  This is because it 

allows for change, hence, a tool for reasoning about time, beliefs, computational 

systems, necessity and possibility, and much else besides topologies.  Modal logic is a 

non-classical logic which has modality or several modalities in it that allows for 

reasoning about uncertainty (Coppin, 2004). According to Coppin, ML allows a logical 

system without the law of excluded middle, it only holds due to time, and is called a 

contingent.  Modality is also a connective which takes a formula/s and produces a new 

formula with a new meaning.  Modal means qualification over the truth of claim.  

Examples of Modal logic (Ballarin, 2010) include: 

(i) Alethic Logic - Necessarily, Possibly 

(ii) Temporal Logic -  Will be, Was, Has been, Will have been 

(iii) Deontic Logic  - May, Can, Must 

(iv) Epistemic Logic – Certainly, Probably, Perhaps, Surely.  
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Most applications employing key ideas (like flow of time, relation between epistemic 

alternatives, transitions between computational states, networks of possible worlds) 

can be represented in graph-like structures. 

Modal logic has been widely employed to formalize mental attitudes of intensional 

artifacts such as beliefs and desires, although some choose to stick to classical 

predicated logic.  Typical issues are how to deal with motivational attitudes such as 

intensions and with informational attitudes such as beliefs.  Another issue is on how to 

formalize commonsense reasoning (the way human reason in formal sciences such as 

mathematics and logic), the reasoning patterns connected with default (rules of thumb) 

and counterfactuals.  This include non-monotonic reasoning and belief revision 

(dealing with how the belief of a reasoner change when new information becomes 

available and is incorporated) applicable in companion robots. The interesting aspect 

of Modal logic is its dynamics, that is, the ability to change over time (Dosen, 1992).  

In other to proof the decidability of RCC-8, modal logic was introduced and used as a 

spatial logic: a logic of necessity and possibility.  Although Orlov, Lewis and Godel 

first introduced Modal Logic (Zalta, 1995), they did that without any intention to 

reason about space but to interpret intuitionistic logic in classical logic.  Lewis went 

further to give the modal schemata of S4 to be: 

()  () 

 

 

with possibility operator defined to be 

 =  

This S4 modal schemata is interpreted in topological spaces. Also, modalities, when 

added to temporal language serve as quantifiers over possible histories (Wolter and 

Zakharyaschev, 2002).  This further qualifies ML as a suitable language for reasoning 

with spatial and temporal concepts. 
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2.8.2.1 Syntax of Modal Logic 

A basic modal formula consists of a proposition symbol, a Boolean constant, a 

Boolean combination of basic modal formula, or a formular prefixed by a diamond.  

According to (MacFarlane, 2011) a formula (a proposition) could be 

(i) necessarily / possibly true 

(ii) true today / tomorrow 

(iii) believed / known 

(iv) true before / after an action / the execution of a program. 

There are three types of modal logic, namely: Basic Modal Logic, Normal Modal 

Logic and Multi-Modal Logic. 

1. Basic Modal Logic (BML) 

 The language PML of BML is that of propositional logic with two extra 

connectives,  and .  The alphabets of PML consist of: 

(i) Enumerable set of propositional variables:  = p0, p1, …, q0, q1, …, 

(ii) The logical constraints: T(true) and (false) 

(iii) The Boolean connectives: (and), (or), (implies), (if and only if) and 

(not). 

(iv) The modal operators: (it is necessary) and (it is possible). 

The language is defined by the following Backus Naur Form(BNF): 

 PML::= Tpi()()()(), 

The propositional variables (p0, p1, …) and constants (, T) denote atomic formulas 

whereas ,  denotes sets of formulas.  If  and  are PML formulas, then so are 

(),(), etc. following standard tradition.  Examples of formulas of the BML are  

 (p0(p0p3)) 

and  

((p1p3)p0)). 
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Although many of such formulas can be constructed using the basic modal language, 

PML, not all of them constitute a model system.  The basic idea of constructing a 

modal system is to single out and describe those formulas that represent true 

propositions no matter what true values are assigned to the variables.  The set of 

formulas (usually referred to as axioms) together with a set of rules is denoted by  

and is often called the logic of the corresponding system. 

2.8.2.2 Semantics of Modal Logic 

Formulas in a modal system should satisfy certain truth conditions.  Note that, the 

falsity and truth of variables in classical propositional logic is with respect to states 

only whereas in the case of modal logic one has to think of the truth and falsity of a 

variable with respect to states and certain relations between the states.  Giving 

semantic to our logic, mean, interpreting our modal language as a way of talking about 

relational structures.  Modal logic can be given different interpretations: algebraic 

semantics, topological semantics and relational/Kripke semantics.  The Kripke 

semantics is commonly used to explicate the logical structure of a modal system 

(Kripke, 1963).  This means to explain in a detailed and formal way (i.e. developing an 

idea or theory and show its implications).  There are two ways of doing this, namely: 

model level and frame level shown in figure 2.8 (a and b respectively).  Both levels 

support the key notions of satisfaction and validity. 

Kripke Frame: A Kripke frame is defined as a pair, F= (W,R) where W is a set called 

the set of worlds and R is a binary relation called an accessibility relation.  A frame is a 

set of points and the relations between them. 

Kripke Model:  A Kripke model is a triple  = (F,v,w), where v:2
W

.  From this 

definition, a model is based on the frame F, or F is the underlying frame of .  

Elements of W are called worlds, states or points and x1Rx2 means x2 is accessible 

from x1 or x1 sees x2 or x2 succeeds x1. 

A frame is more like a directed graph and has no information about the atomic 

formulas at various points.  But models evaluate the truth of propositions with the 

notion of giving satisfaction in a world. 
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The basic modal logic model is the Kripke structures / Possible World structures.  

Kripke structure is a triple M = (W,R,V), where W is the non-empty set of possible 

worlds (that is states in a computation), R  W  W is the accessibility relation 

(otherwise called transition relation) and V: (Prop  W) → (true, false) is a valuation 

function (which tells us the properties that is true and of which state). 

This model is also viewed as a graph (W, R) with a function V that tells which 

proposition variables are true at which vertices (Alechina, 2003). 

PWS gives the different variations on the concept of truth or satisfaction to include: 

(i) truth of a formula at a world of a model 

(ii) truth of a formula in a model 

(iii) truth of a formula in a frame 

(iv) truth of a formula in a class of frames 

R,w |=  iff for some wW we have wRw and R,w |= .  Other logical 

connectives can be defined thus. 

Inductively, 

R,w |= p0  iff c  v(p0) 

R,w |=  iff R,w   

R,w |=  iff R,w |=  and R,w  |= . 

R,w |=  iff for all wW with wRw implies  R,w |= .  

From here, 

Modal Logic follows several Possible World Semantics (PWS) like the Kripke 

semantics (K), T, S4 and S5 (Cohn and Hazarika, 2001).  Familiar logics in modal 

family are constructed from the weak logic, K, the foundational logic for any modal 

system. 
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Figure 2.8:  Kripke Frame versus Kripke Model 
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2. Normal Modal Logic (NML) 

Normal modal logic is defined by the set of modal formulas that contains: 

(i) all propositional tautaulogies 

(ii) axiom k: (pq)  (pq) 

(iii) p  p 

and that is closed under necessitation, that is if |-  where |-  is a theorem, 

modus ponens and uniform substitution. 

Modus ponens: if  and  are theorems so is  

Necessitation: if  is a theorem, so is  

Uniform substitution: given formula (p1, …, pn) in , it respectively gives the 

derived formula (|p1), …,(|pn). 

The above definition of NML is the smallest form.  The extension of NML with a set 

 of axioms gives other forms of NML and is denoted as =K . 

3. Multi-Modal Logic (MML) 

This is a generalized modal logic that allows more than one modal operator to appear 

in a formula.  This is suitable to reason in a multi-agent environment, to model several 

agents and to represent group properties like knowledge, beliefs and flow of time.  The 

syntax of the MML consists of K-axiom and the generalization rule formulated for 

each of the boxes 1, …, n. 

 I (p0p1)  (i p0 i p1)  (K) 

 given , derive i   (NEC) 

Hence, the smallest (minimal) n-modal logic (Kn) is defined by a set of PMLn formulas 

that contains all propositional tautologies and (K), for 1in, and is closed under the 

rules of Modus Ponens, substitution and necessitation, for all i=1, …, n. 
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Examples of multi-modal logics include: 

 K4n  Kn  {i p0 i i p1|1in } 

 Tn Kn  {i p0  p0|1in } 

 S4n K4n  {i p0  p0|1in } 

 KD45n K4n  {i p0 i p0, i p0 i i p0 |1in } 

 S5n S4n  {i p0 i i p0 |1in}.  

This means that the knowledge that whatever is necessarily true is the case, M: A  

A, when added to K produces another system, T. And since M is still seen as being 

weak, the suggestions to strengthen it yielded other systems.  Adding 4: AA to 

T produces S4 system; adding 5:AA to T produces S5 and adding B:AA to 

M gives system B, hence adding B to S4 yields S5.  We are saying that if A is an 

axiom of (classical) non-modal propositional logic, PL then A is an axiom of each 

modal propositional logic, K defined by  

 (P  Q)  (P Q), 

the addition of the primitive transformation rules of uniform substitution, modus 

ponens and necessitation of theorems in order to obtain the system K.  The various 

systems T, B, S4 and S5 are specified by adding certain further axioms to the base of 

K and summarized in Table 2.3 with their features. 

Nair (2003), in his work, gave an overview of how the mental states of an agent (in 

particular its beliefs, desires and intensions (BDI) states/model can be represented 

using a modal language.  BDI is a propositional modal language with 3 families of 

modal operators namely: BELi, DESi, INTi, I = A (agents) and BEL, DES and INT is 

beliefs, desires and intensions of the agent respectively.  

The semantics (Kripke structure) of their logic is defined as a tuple 

 M=(W,{Sw:wW}, {Rw:wW}, v,B,G,I) 
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where, W = set of possible worlds 

 Sw = set of states in each world, W 

 Rw = binary relation i.e. Rw  Sw  Sw 

v  = truth assignment to the primitive propositions of  for each world wW at 

each state, sSw, (i.e. v(w,s):{true,false} 

 B,G,I = relations on the worlds, W and states, S (i.e. BWSW). 

2.8.3 Quantified (First-Order) Modal Logic  

This logic combines features of two logical languages, namely, first order logic and 

modal logic.  Over the years, multiplicity of versions and inadequate syntax had been 

the reason for non-standardization of first order modal logics as a tool in many 

disciplines.  The syntax and semantics of first order modal logic given by Fitting 

(1998) shows how it easily copes with several familiar problems such as our problem 

of spatial qualification.  This leads to our choice of first order modal logic as the 

representational language for our logic.  Quantified ML combines adequate 

expressibility of first order logic with the dynamics of modal logic as seen in the 

discussion of the syntax and semantics of both languages in previous sections. 

2.9 Standard Formal Semantics 

Formal logics follow several standard interpretations (semantics) such as situation 

semantics and possible world semantics. 

 2.9.1 Situation Semantics 

Although situation semantics was originally conceived as an alternative to extensional 

model theory and possible world semantics (Devlin, 2004), it has the central ideas 

including partiality, realism and the relational theory of meaning (Perry, 1998).  

Partiality is concerned with the limited parts of reality that we in-fact perceive which 

was seen as partial first order models (Barwise, 1983), reason about, and live in.  This 

is because what goes on in a particular situation will determine answers to some issues, 

but not all.   
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Table 2.3:  Standard Logical Systems and their features 

System             Axioms added to K  Distinguishing feature of R 

K  None     None 

T   P  P    Reflexivity 

B   T plus     Reflexivity and symmetry 

  (B*) P P 

S4   T plus     Reflexivity and transitivity 

  P P 

S5  T plus     Reflexivity, symmetry 

  P P    and transitivity (i.e. equivalence) 
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The emphasis on partiality according to Devlin (2006), was that it brings situation 

semantics in contrast with possible world semantics. Instead of the generalized 

approach (that is, the potentially infinite models of the real world or possible world) by 

Montague, Barwise and Perry adopted the finite situations as their basis (Janson, 

2012).   

Early versions of situation semantics followed the standard set theory and/or the 

concepts of constraints (Barwise, 1983).  McCarthy described an aspect of the world in 

association with a situation together with the intended meaning that the property holds 

in that situation (Koomen, 1989).  For example, a cup C is full in situation S, is stated 

as  

 Full(C,S). 

Actions in situation calculus are function that produces a new situation from existing 

one together with arguments through rules (constraints).  

Situations are real, actual parts of the world that deal with properties and relations that 

are real uniformities across the real/actual parts of the worlds.  Situation semantics is 

also a method for analyzing semantic phenomena, that is, it provides a relational theory 

of meaning.  This theory distinguishes three notions that are often treated as if they are 

somewhat interchangeable.  These notions are information, representation and 

proposition.   

(i) Situation semantics distinguishes the abstract meaning (general meaning) of a 

word/phrase  

(ii) Utterance situation:  This is the immediate context (environment) but not 

necessarily.  For example, a man is at the door, where the man is the object 

and the door is the part of the situation linked to the object. 

(iii) Resource situation: This can be exploited in various ways namely:   

a. As perceived by speaker 

b. As the object of some common knowledge about the world 

c. As the way the world is 

d. As built up by previous discourse. 
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Example: The man I saw running yesterday is at the door. 

(iv)  Focal situation: This is the described situation.  Simply put, focal situation is 

the part of the world the utterance is about. 

Situation semantics distinguishes the abstract meaning (general meaning) of a 

word/phrase/sentence from the meaning in use (as used in a particular context or 

instance).  This means that the meaning in use is induced by the abstract meaning.  In 

situation semantics, analysis is done in three ways: 

Situation semantics use complexes of objects and properties to directly or indirectly 

classify parts and aspects of reality, or situations (Schubert, 2000). Classification is 

done by what goes on in the situations, that is, the objects‟ properties and the relations 

they stand in to one another in virtue of the events that comprise the situation.  From 

one type of situation, another one is involved, meaning that a situation determines the 

next state of affairs or possibilities (whether or not another situation is possible).  

These states of affairs are constraints.  Considering an example of two situations: 

(i) A dog breaks a leg 

(ii) A dog doesn‟t run, 

a state of affairs occur where (i) involves (ii), that is, dogs with broken legs don‟t run. 

This becomes a constraint giving rise to the possibility of indirect classification.  By 

indirect classification, it does not follow the supported state of affairs but the types of 

situations involved, relative to some constraint.  This is by what they mean or by their 

contents (factual or fictional).  These situations may be local connections between 

objects in the situation and other objects (subject matter), remote (the content) and the 

constraint according to type combination.  Examples: 

(i) The veterinary said that Jackie had a broken leg 

(ii) The xray shows that Jackie has a broken leg 

(iii) Jackie has a broken leg. 

with (i) and (ii) as indirect classification and (iii) is direct classification. 

Semantic Web is based on formal logic for which one can assert facts that are 

unambiguously certain.  Context meaning concept of type or proposition was first 
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presented as formal objects in logic using existential graphs by a philosopher named C. 

S. Peirce.  Ontologies are ways that one can implement the situation awareness of the 

logical reasoning about situations and context. 

2.9.1.1 Advantages of Situation Semantic 

Situation semantics, as identified by Perry, allows us to see how different information 

can be gleaned from the same „signal‟ given different starting points.  The fact that a 

situation involves another, allows one to determine the next state of affairs or 

possibilities, thereby knowing whether or not another situation is possible.  Also, the 

introduction of parameters allows the crucial information links to actual/specific 

entities to be tracked.  This is made possible through the use of a function called an 

anchor. 

2.9.2 Possible World Semantics 

Possible World Semantics (PWS) is viewed by many as a family of methods that have 

been used to analyze a wide variety of intensional phenomena (properties), including 

modality, conditionals, tense and temporal adverbs, obligation and reports of 

informational and cognitive content (Star, 2008). 

Over time, applications of logic in Computer Science and Artificial Intelligence only 

featured extensional (set) semantics where the extension of a singular term is the object 

it formally describes, and the extension of a sentence is a truth-value.  Predicate 

calculus is really adequate for important work in mathematical logic.  The success 

recorded introduced the intensional phenomena of which the extensional constructions 

are not suitable for tackling them.  In the quest to deriving intensional construction, 

Lewis, whose disliked to extensional treatment of “if…then…” led him to “strict 

implication”, considered modal logic, the logic of necessity and possibility.  He 

maintains that possible worlds are alternative concrete realities, they are actual for their 

inhabitants, as ours is for us.  Inhabitants of other worlds are not identical with the 

inhabitants of the actual world. 

Leibniz idea that necessary truth was truth in all possible worlds was recruited by 

Carnap to the task of building an intensional semantics.  This recruitment serves as the 
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guiding idea of PWS since others rely on linguistics representations of possible world 

called “state-descriptions”. 

 PWS supplies only one necessary proposition, the set of all worlds, and only one 

contradictory proposition, the null set.  This makes it more problematic for 

mathematical knowledge to be dealt with.  This, he said, can be resolved if 

mathematical knowledge is viewed by seeing a linguistic element in the knowledge of 

mathematical truth.  Intensional logic combines modal, temporal and other operators. 

Guarino (1998) stated that a standard way to represent intensions (and conceptual 

relations) is to see them as functions from possible worlds into sets.  Despite some of 

its disadvantages, it works fairly well for our purposes.  Here, conceptual relations are 

defined on a domain space, <D,W>, that is, D is a domain and W is a set of maximal 

states of affairs of such domain (also called possible worlds).  The structure <D,W> 

refers to a particular world (or state of affairs), called world structure.  

Conceptualization contains many of such world structures called intended world 

structures. 

The interplay between semantic structures and logical systems involved in these 

investigations constitute a development in logic comparable to the move in geometry 

away from Euclidean Geometry, conceived as the one true system to geometry as the 

study of alternative axiom systems for spaces with diverse properties (Perry, 1998). 

2.10 Theorem proofing and Analytic Tableau Proof Method 

The conclusions reached from the descriptions using logical languages need to be 

proven.  Theorem proofing can be done using several proof methods such as 

unification, resolution and tableau proof method (Ramsey, 1989). Classical logics such 

as first order logic can best be handled using resolution since it is in clausal form. The 

most widely used proof method for modal logics is the analytic/semantic tableau proof 

method (Ramsey, 1989).  The use of analytic tableau proof method reduces the burden 

of transforming sentences such as possibility to its clausal form. Semantic tableau is a 

proof system used to prove the validity of a formula, or if a formula is a logical 

consequence of a set of formulas and/or prove of satisfiability of a set of formula 

(Sabri, 2009). 
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A tableau is a tree-like representation of a formula or set of formulae in logic 

(Sheremet et al, 2010). Tableau calculus consists of finite collection or set of rules.  

Rules specify how to break down one logical connective into its constituent parts.  In 

tableaux, if any branch leads to an evident contradiction, the branch closes.  If all 

branches close, the proof is complete and the original formula is said to be a logical 

truth.  A proof procedure on the other hand is a policy of application of the rules. The 

objective of tableaux is to show that the negation of a formula is not satisfied. 

A signed tableau is an expression TX or FX.  Where formula X is unsigned, it is called 

TX where X is true, FX where X is false.  Also a signed formula is called FX if X is 

true and TX if X is false.  Hence, a tableau is a rooted dyadic tree where each node 

carried a signed formula.  The application of a tableau rule following a finite path 

causes an immediate extension of the formula.  A path of a tableau is said to be closed 

if it contains a conjugate pair of formulas, that is, a pair such as TA, FA.  On the 

contrary, it is said to be open if it is not closed.  A tableau is closed if each of its paths 

is closed. 

Tableau can be used to prove a formulae as follows: 

(i) To test a formula A for validity, a signed tableau starting with FA is 

formed.  If the tableau closes off then A is logically valid. 

(ii) To test whether formula B is a logical consequence of A1...Ak, a signed 

tableau starting with TA1 ... TAk , FB is formed.  If it closes off, then B is 

in deed a logical consequence of A1...Ak. 

(iii) To test A1...Ak for satisfiability, a signed tableau with TA1...TAk is formed.  

If it closes off then A1...Ak is not satisfied.  If the tableau does not close off 

then A1...Ak is satisfied, and from any open path, one can read off an 

assignment satisfying A1...Ak. 

The basic rules for constructing the tableau stems from that of propositional logic, 

extends to rules that cope with the universal and existential quantifiers in first-order 

logic and then to rules that cope with possibly and necessarily modalities of modal 

logics.  Since our logic is a quantified modal logic, we shall combine all the rules for 

propositional, first-order and modal logics as described in the chapter addressing the 

development of the proof system.  In most cases, first-order logic is said to be 
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undecidable and thereby produces no correct or complete proof.  This research will 

demonstrate the effectiveness of modal logics. 

2.11  Spatial Qualification Problem in AI Domains 

Spatial qualification problem is prominent in domains such as planning, which has 

remained a domain of concern in the AI field.  Several projects like the TRAINS 

project (Allen and Schubert, 1991; Traum et. al., 1994) helped to unveil the need to 

spatially qualify objects required for problem-solving in planning domain.  Planning 

problems such as prediction (assumption of the world) and planning (assumption about 

the future world) require reasoning. 

Although action viewed as state change is the predominant approach to modeling 

action in AI and Computer Science, attempts have also been made by researchers in 

the field to build planning model that considered past knowledge before its decision on 

the next action to take.  This view underlies the state-based planning systems, formal 

models of planning and works in dynamic logic for the semantics of programs.  These 

researches help in plan monitoring and execution (Georgeff and Lanskey, 1987; Allen 

et. al., 2004). An example of such model is that of planning as temporal reasoning by 

Allen (1991) for solving the planning of the execution of the door latch problem.  In 

this door latch problem, the preconditions for pulling the door is that the agent is 

holding the lock open.   

Considering the Door latch problem, other preconditions were identified by Allen 

without considering the spatial qualification problem. There is need for the intelligent 

agent to be spatially qualified before assessing the identified preconditions to carry out 

the plan. Hence, this study was motivated about the planning as its application domain. 

2.12 Challenges and the way forward 

The use of qualitative reasoning approach in the logic further showcases the strengths 

of the approach over purely quantitative reasoning approaches where highly 

sophisticated models and complete quantification of domain knowledge are used in 

commonsense reasoning. 
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RCC is a first-order theory that deals with regions in a topological manner and is 

appropriate because aside from being expressive, it captures basic distinctions of 

objects and the regions such as, whether or not two glyphs are disjoint, touching, or 

inside one another. Also, domain-specific inference rules (Forbus et al, 2004) can use 

these relationships when needed, such as inferring containment of physical objects 

depicted based on one glyph being inside another.  Much of the work on RCC8 and 

other qualitative topological algebras have focused on using transitivity for efficient 

inference. 

Importantly, also in modal logic, the way, mode, state of truth of a formula is also 

important rather than only seeking to know whether a formula is true as it is the case in 

classical logic.  Hence our use of the first order (quantified) modal logic combines 

features of both logical languages for appropriate representation in our spatial 

qualification domain. 

Even though concepts in the world are not total situations but partial, and can be better 

handled using the Situation Semantics (Schubert, 2000) due to its outstanding features 

which includes talking about incomplete world, Possible World Semantics offers the 

most appropriate semantics approach when considering intensions.  In this thesis, the 

formal semantics of our logic will be defined with respect to the Possible World 

Semantics/Kripke structure where each partial world is seen as a possible world due to 

its dynamics according to time.  
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CHAPTER THREE 

LOGICAL THEORY OF SPATIAL QUALIFICATION 

3.1 Introduction 

This chapter describes the conceptual framework of the SQM and its formal 

specification.  The use of qualitative reasoning approach in SQM to reason about an 

agent‟s spatial qualification is diagrammatically and formally defined and represented. 

Describing the model following the Possible World Semantics/Kripke structure shows 

its properties. Further comparison of the logical model with existing standard modal 

systems to further ascertain its satisfiability is carried out. Examples of application 

domains where the model can be applicable are also highlighted. 

3.2 The Conceptual Framework of Spatial Qualification Model (SQM) 

Before the logical theory of Spatial Qualification (SQ) is defined, several parameters 

for its qualification as shown in the model structure of the Kripke model in figure 

2.8(a) are considered.  In spatial reasoning field (Allen and Ferguson, 1994), it is stated 

that knowledge of the world is necessarily incomplete and unpredictable in detail, 

thereby causing predictions to be done only on the basis of certain assumptions.  

Hence, SQM assumes that the distances and the speed limits on all possible routes are 

available for use when needed.  This assumption is based on successes recorded in the 

area of geographic information systems where the GPS in mobile devices can 

conveniently constitute the database required as input for SQM. 

The choice of formal language used for the representation of the logical model to be 

Quantified (First Order) Modal Logic is due to its expressivity and ability to represent 

incomplete and unpredictable information about agents in a possible world.  The 

conceptual framework of SQM as presented in figure 3.1 has spatial concepts and 
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calculi.  Attempts to model spatial concepts which include distance, shape, size, 

direction, time and motion in the known section have been made. Spatiotemporal 

calculi such as distance, direction, anchoring, RCC, QTC and motion resulted from 

these models. Spatial qualification in the unknown section intends to use known 

distances and time in figure 3.1 as quantitative measures and the locations, presence 

log and reachability relation from one location to the other of an intelligent agent as 

qualitative measures.  The presence log is the carrier of the locations of the agent at 

certain times while the reachability relation is the determinant of the distances between 

these locations.  These parameters are necessary to determine the possibility of agents‟ 

presence in n possible locations to participate in any action. 

With the existing calculi and the newly defined qualitative relations, spatial 

qualification logic, a new calculus as the basis of the SQM model is obtained. 

3.3 Formal Specification of the Spatial Qualification  

Problem solving with Qualitative Spatial Reasoning (QSR) involves formalizing one 

type of spatial relations and discussing their attributes; and composing two or more 

spatial relations to obtain a previously unknown relation.  Formalization has to do with 

the use of a logical language to express concepts and relationships among the concepts.  

Logical axioms have proven to be the most expressive formalism.  Hence, most of 

these formalisms make use of logic as the representation language.  In the formal logic, 

modalities are introduced into First order logic.  The syntax of the combined logic is 

given below. 

The vocabulary of the spatial qualification logic includes: 

 Spatial locations: L = { …, li, …} 

 Predicates:  Present_at, Occupy 

 Time points: T = {…, ti, …} 

 The Boolean connectives: (and), (or),  (implies),  (if and only if)  

  and (not) 

 Quantifiers:  (Universal) and  (Existential)  

 Modal operators: (necessity) and (possibility) 

 The logical constraints: T(true) and F(false). 
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The language of the SQ logic is a many sorted quantified (first order) modal logic. In 

SQ logic, the formalism assumes that constants definitely refer to known agents in the 

world, unlike in Fitting‟s quantified modal logic (Fitting, 1998) where constant 

referents may not refer to a definite agent. As such, basic formulae in our logic take the 

form: P(t1, t2, t3…tn) where P is an n-nary predicate symbol and t1, t2,…,tn are terms. 

Each term can either be a constant symbol or variable symbols.  

There are three basic sorts of constants in the language. These are Agents, Locations 

and Time points. Locations in our logic denote the notion of regions generally used in 

spatial logic. Apart from the predicates denoting the standard spatial relations from 

RCC, the major predicate is Present_at with the following signature. 

 Present_at : Agents  Location  Time point  Boolean 

Each proposition formed with Present-at is called a presence log. We can think of the 

fact that x is Present-at location l at time t as defined by the fact that an agent occupies 

a region which is within the location l. The definition is presented thus: 

 x, l, t. Present_at(x, l, t)  

    r. Occupy(x, r, t)  (NTPP(l, l1)  TPP(l, l1)  l1= l) 

where Occupy is a relation between individuals or object and the exact 2-dimensional 

space they occupy at a certain time. If an object or individual occupies a space, that 

object does not occupy any larger region containing that region 

 x,l,t. Occupy(x, l, t)  (NTPP(l, l1)  TPP(l, l1))  Occupy(x, l1, t) 

Following the standard tradition of first order modal logics, if  and  are formulas, 

then so are (), (), , , ,x., x. ,   and .  The scope of 

variables in quantification is the formula following the dot after it. The meanings of the 

classical logic operators are as given in the model semantics for first order predicate 

logic. The modal operators in this formal logic have meaning attributed to them from 

the standard possible world semantics. The proposition  means  is true in all 

possible worlds accessible from the current world, while  means  is true in some 

world accessible from the current world.  
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3.4 Qualitative Model for Spatial Qualification  

The qualitative model for spatial qualification gives rise to the spatial qualification 

reasoner with its input, processes and output described in the diagrammatic 

representation of the SQ reasoning process shown in figure 3.2.  The basic input to the 

reasoner is the prior knowledge which includes an agent‟s past location and time as 

well as the location and time of incidence.  The basic assumption is that the SQ 

reasoner has this knowledge. 

The role of the SQ reasoner is to investigate the reachability of the locations in the 

prior knowledge within the recorded times.  The result of this investigation is the 

determinant of the possibility and otherwise the impossibility of the presence of the 

agent in the location of incidence to be a participant.  The possibility of presence of the 

agent which is the uncertain knowledge is therefore the output from SQ reasoner. 

Considering an agent or object that was present at place p and at a time t. Is it possible 

for the same agent to be present at a different place p1 at a subsequent time t1, given 

what was known? This problem may be reduced in a sense to the problem of 

determining whether or not the agent can travel between place p to place p1 between 

time t and time t1. A human reasoning agent confronted with this problem would 

reason using the distance between place p and p1, and the rate at which the agent could 

travel. Most human agents are able to estimate how long it takes to complete a journey 

on a certain highway (or path). As can be affirmed by most people, this kind of 

reasoning is commonsense reasoning because it can be answered experientially by 

anyone who has traversed the highway or estimated by anyone who knows the length 

of the highway.  The agent having known the locations will use some prior knowledge 

of the distance and the speed limit allowed on the road. This knowledge can then be 

used to determine the time it will take simply by dividing the distance by the speed.  It 

is obvious that the distance and the speed limit of the road to traverse have to be 

known in other to determine the minimum time it will take to traverse the road.    
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Figure 3.2: Diagrammatic Representation of the Spatial Qualification Reasoning Process 
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This approach to solving this problem was based on qualitative modeling. Intelligent 

agents can use qualitative models to reason about quantities without having to resort to 

the nitty-gritty of mathematics and calculus. A particular approach that is powerful in 

this regard is that of discretization. In discretization, quantities are divided into chunks, 

and the solutions to our problems can be deduced from the solutions to the smaller 

versions of the problem. For example, if an agent‟s presence at location l1 at time t 

implies he/she can be in location l2 at a later time t1, and an agent being at location l2 at 

time t1 implies he can be at location l3 at a later time t2 and l3 is farther from l1 than l2 

is, then x being present at l1 at time t implies x can be present at l3 at time t2.  The 

lemmas and basic definitions that make up our qualitative logic for spatial qualification 

is presented in section 3.4.1. 

3.4.1 Basic Definitions for spatial qualification 

Let l be a location (region) in space and l1 a different location (region) in space too. 

Following from the definitions of the eight disjoint pair of relations - RCC-8 (Wolter 

and Zakharyaschev, 2000a, 2000b, 2002; Randell et al, 1992), which is based on the 

region connection relation, C, we have the following definitions. 

 l C(l,l) 

l,l1 (C(l,l1)  C(l1,l)) 

DC(l,l1)  C(l,l1) 

P(l,l1)  z (C(x,l)  C(z,l1) 

EQ(l,l1)  P(l,l1)  P(l1,l) 

O(l,l1)  z(P(z,l)  P(z,l1)  

PO(l,l1)  O(l,l1)  P(l,l1)  P(l1,l) 

EC(l,l1)  C(l,l1)  O(l,l1) 

PP(l,l1)  P(l,l1)  P(l1,l) 

TPP(l,l1)  PP(l,l1)  z (EC(z,l)  EC(z,l1)) 

NTPP(l,l1)  PP(l,l1)  z (EC(z,l)  EC(z,l1)) 

Hence, the definition of Regionally_part_of and the Regionally_disjoint relations for 

SQ logic are Def1 and Def2 as shown in figure 3.3. 
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3.4.2 Logic of Presence 

Theorems TA1 – TA9 below constitute the spatial qualification logic of presence.  Note 

that in the logic, a world‟s accessibility is determined by its reachability from another 

world and not the reverse. 

3.4.2.1 Persistence of Truth 

Our logic treats any known fact as something that remains permanently true. As such if 

we know that an agent is present at a location l at time t, then that fact is always true.  

For every agent x present at location l at time t, it implies that it is necessarily true that 

every agent x is present at location l at a certain time t. 

TA1:  x, l, t. Present_at(x,l,t)  Present_at(x,l,t) 

3.4.2.2 Possibility of Location Persistence 

For every agent x present at location l at some time t, it implies that it is possible that 

the same agent is present at that location at a later time t1. 

TA2:  x, l, t. Present_at(x,l,t)    (t1. t < t1   Present_at(x,l,t1)) 

Possibility can also be defined based on the reachability of spatial locations.  So there 

is need to first define reachability as follows. 

3.4.2.3 Definition of Reachability 

Now, defining what it means for an agent x to be able to reach location l2 from l1 in the 

interval (t1, t2) is given thus. 

TA3: x, l1, l2, t1, t2. 

   Reachable(x, l1, l2, (t1, t2))  (t1 < t2   

   (Present_at(x, l1, t1)  Present_at(x, l2, t2))) 
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3.4.2.4 Reachability is Reflexive 

A location is reachable from itself for any agent within any interval of time no matter 

how small.  This means the location is self-accessible or that an agent can remain in 

the same location till a later time. 

TA4: x,l1,l2,t1,t2. l1=l2  t1<t2  Reachable(x,l1,l2,(t1,t2)) 

3.4.2.5 Reachability is Commutative 

Generally, if one can reach l2 from l1 in a time interval, then it is possible to achieve a 

reverse of that feat within the same interval. 

 TA5: x, l1, l2, t1, t2. 

   Reachable(x, l1, l2, (t1, t2))  Reachable(x, l2, l1, (t1, t2)) 

Note that the reachability two possible worlds can apply to „n‟ possible worlds 

accessible from a nearby node. 

3.4.2.6 Reachability depends on duration of time interval 

Here is the definition of a property for the notion of being reachable. If it is 

possible for an agent to reach one location from another, it should still be possible for 

the same agent to perform the same feat within any interval of about same or different 

duration.  

For instance, with justifiable reason, one can go from Uyo to Eket within 2 hours and 

return through the same route within an hour or more. 

  TA6:  x, l1, l2, t1, t2. 

   Reachable(x, l1, l2, (t1, t2))  t3, t4. t3 < t4   

(t4 – t3)  (t2 – t1)  Reachable(x, l1, l2, (t3, t4)) 
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Def1: l,l1 Regionally_part_of(l,l1)  EQ(l,l1)  TPP(l,l1)  TPP(l1,l) 

 NTPP(l,l1)  NTPP(l1,l) 

 

 

 Def2: l,l1 Regionally_disjoint(l,l1)  DC(l,l1)  EC(l,l1)  PO(l,l1) 
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Figure 3.5: Definition of the accessibility of two possible worlds 
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3.4.2.7 Possibility of presence in regions at same time 

The possibility of an agent to be present at two different locations at the same time can 

be determined by the topological relationship between the two locations.   For every 

agent x said to be in location l at time t and also at location l1 at the same time and the 

locations are regionally part of each other, it then implies that it is the case that the 

agent is present at both locations at the same time.  

TA7:  x, l, l1, t. (Present_at(x, l, t)  Regionally_part_of(l, l1)) 

 Present_at(x, l1, t)  

Representations in figure 3.3 depicting Def1 clearly describes this logical theorem.  

3.4.2.8 Persistence within regions 

If an agent is at a certain location then for some time afterwards, the agent will be 

within some region surrounding the location. 

 TA8:  x, l, t. Present_at(x, l, t)    

    r, t.  NTPP(l, r)  Present_at(x, r, t+t)  

3.4.2.9 Exclusivity of Presence 

For every agent x said to be in location l at time t and also at location l1 at the same 

time and the locations are regionally disjoint, it then implies that it is not possible for 

the agent to be present at both locations at the same time.  

 TA9:  x, l, l1, t. 

   (Present_at(x, l, t)  Regionally_disjoint(l, l1)) 

 (Present_at(x, l1, t) 

Representations in figure 3.3 depicting Def2 clearly describes this logical theorem.  

3.4.2.10 Reachability is transitive 

For every agent x present at location l1 at time t1, it is possible for it to be at location l2 

at another time t2.  Also, being at location l2 means it is possible for it to be at another 

location l3 at time t3 and the distance between l1 and l2 is smaller than the distance 
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between l1 and l3 and t1 is also less than t2 then it implies that it is possibly true that the 

agent at location l1 at time t1 is at location l3 at time t3. 

 TA10:  x, l1, l2, l3, t, t2, t3. 

   Reachable(x, l1, l2, (t, t2))   Reachable(x, l2, l3, (t2, t3))  

    Reachable(x, l1, l3, (t, t3)). 

The axioms presented here are able to infer reachability when it is true. Otherwise they 

are not able to make the inference. In other words reachability is only semi-decidable. 

In order to make it decidable, we need a closure for the reachability concept.   

Logic of spatial qualification must be able to reason about the presence of agents at 

different locations. It is possible to view the problem of spatial qualification as the 

problem of reasoning about the accessibility of worlds. Each world contains a log of 

“who is at what location and when?” 

3.5 Formal Semantics of the SQM 

To further explicate this logic to give its actual meaning as it applies in reality, the 

concepts are defined with respect to the model structure of the Possible World 

Semantics (PWS) or Kripke structure.  The semantics of the language is formally 

defined with respect to the Possible World Semantics (PWS), a triple M = (W,R,V) 

which is defined as: 

 M = W, R, V       (3.1) 

Where W is the non-empty set of possible worlds (that is states in a computation), R  

W  W is the accessibility relation (otherwise called transition relation) and V: (Prop  

W) → (true, false) is a valuation function (which tells us the properties that are true 

and of which state). 
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In our problem domain, the possibility of an agent to be present at a particular place at 

a certain time is viewed as a possible world.  The set of possible worlds in our case 

here is as defined in equation (3.2). 
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Figure 3.8: Accessibility of possible worlds by discretisation 
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Figure 3.7: Two possible worlds accessible from each other 
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 W = S  T        (3.2) 

and W  { } or ,  that is W is not an empty set with S being states indexed with time 

and defined by 

 S= {O, L}       (3.3)  

where O is a set of objects in space and L is the actual locations where the objects are 

and  

 T = t,≺        (3.4) 

where t is the set of possible flow of time. 

Considering the definitions in (3.3) and (3.4) above, T and S are respectively stated in 

(3.5) and (3.6) as follows: 

 T = {t1, t2, t3, …, tn}       (3.5) 

and  

 S = {O1,L1, O2,L2, O3,L3, …On, Ln}    (3.6) 

If the pair Oi, Li is denoted by si, then the set of possible worlds, W, which is defined 

as the Cartesian product of S and T can be derived.  

s1t1 … sntn are therefore the possible worlds contained in the set of possible worlds, W. 

From the model structure of the PWS in (3.1), the accessibility relation, R, is defined 

to be  

 R  W  W       (3.7) 

This means that there is transition between some or all the possible worlds in the set, 

W.  Some of these transitions may be true while some may be false.  The interest in 

this research is on the set of all the possibilities.  These set of possibilities, are 

determined by certain properties.  In the logical model, there are properties that may 
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lead to the truth or falsity of a transition and the state on which it holds.  These are 

handled by the valuation function.    

The Boolean function, F of the accessibility relations can evaluate to V, which may be 

0 or 1 in the set of zeroes and ones. That is 

 F(R(s1t1, s1t2),V)  {true, false} 

if a valuation, V of a function, F is a set of impossibilities then they are denoted with 

zeroes; if it is a set of possibilities then we denote with ones. That means: 

 F: W  W  V        (3.8) 

and V = {0,1}. 

If the transition from state, s1 at time, t1 to state s1 at time t2 is possible, then the 

valuation function returns true.  If the transition is not possible, the valuation function 

returns false.  Sometimes the truth value of a transition may not be decidable due to 

lack of prior knowledge, which is suspended in our model for further studies.  SQM 

model depends so much on prior antecedent for most conclusions about n possibilities 

to be made.   

Therefore our set of prior antecedents is also a non-empty set of possible worlds which 

is now a thing of the past (that is a set of history). 

The SQM is built around a Kripke modal frame which is the triple <W, R, D> where W 

is a set of possible worlds, R is the accessible relation between pairs of worlds, and D 

is a definite domain from which agents in the worlds are drawn.  Note the use of D in 

the adapted Kripke modal frame to replace V, the valuation function.  SQM logic 

contrasts with Fitting‟s quantified modal logic (Fitting, 1998), in which there is a 

domain function D associated with the modal frame such that the function D is defined 

for each world and returns a unique domain associated with that world. One may treat 

our modal frame as a special case of Fitting‟s modal frame, in which the domain 

function D is a constant function.  

This research assumes the existence of an Interpretation function I which interprets 

constant and predicate symbols for each world. The function I maps each constant 
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symbols to specific individuals in some specific world. The expression I[c, w1] denotes 

the application of the interpretation function I on the constant symbol c in the world 

w1. All constant symbols are interpreted uniformly in all worlds so that for any two 

worlds w1 and w2 from W: I[c, w1] = I[c, w2], the function I also maps each n-ary 

predicate symbols to an appropriate n-ary relation in some appropriate world. For 

example the interpretation of Present_at I[Present_at, w1] refers to the actual ternary 

relation that the predicate Present_at refers to in the world w1. It is important to note 

that in any world w  W: 

  I[Present_at, w]   A  L  T 

where A is the set of all agents, L is the set of all locations and T is time points.  

Thus we have a model M which is a 4-tuple <W, R, D, I> which comprises of the 

modal structure <W, R, D> adapted from the Kripke model <W, R, V> and the 

interpretation function, I. Let us as usual denote by M,w ⊨ , the fact that formula  is 

true in a world w of the model M.  Thus the following statements hold for Present_at 

as well as for any other predicate. 

 M, w ⊨ Present_at(Paul, Airport, Noon) if and only if 

  (I[Paul, w], I[Airport, w], I[Noon, w])  I[Present_at, w] 

 M, w ⊨  Present_at(Paul, Airport, Noon) if and only if 

  For some w1 such that (w, w1)  R it is the case that: 

   (I[Paul, w1], I[Airport, w1], I[Noon, w1])  I[Present_at, w1] 

 M, w ⊨  Present_at(Paul, Airport, Noon) if and only if 

  For every w1 such that (w,w1)  R it is the case that: 

   (I[Paul, w1], I[Airport, w1], I[Noon, w1])  I[Present_at, w1] 

 M, w ⊨  Present_at(Paul, Airport, Noon) if and only if 

   (I[Paul, w], I[Airport, w], I[Noon, w])  I[Present_at, w] 

  

M, w ⊨ Present_at(Paul, Airport, Noon)  

   Present_at(Paul, Swimming-pool, Noon) if and only if  
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  (I[Paul, w], I[Airport, w], I[Noon, w])  I[Present_at, w] and  

  (I[Paul, w], I[Swimming-pool, w], I[Noon, w])  I[Present_at, w] 

 M, w ⊨ Present_at(Paul, Airport, Noon)   

  Present_at(Paul, Swimming-pool, Noon) if and only if either 

   (I[Paul, w], I[Airport, w], I[Noon, w])  I[Present_at, w] or  

  (I[Paul, w], I[Swimming-pool, w], I[Noon, w])  I[Present_at, w] 

In order to be able to interpret variables we need a valuation function such that v has 

the signature: 

  v: V  D 

where v is the set of all variables and D is our domain of agents. It is important to note 

here that valuations do not depend on the world. Thus in order to strengthen the 

interpretation function to deal with variables, we redefine the interpretation function as 

Iv so that for any item t: 

 





otherwise       I(t)

 variablea is t ifv(t)
][tIv  

In that case, the model is now redefined as a <W, R, D, Iv> where <W, R, D> is the 

Kripke frame defined for SQM. In that case, the model can redefine what it means for 

propositions to be true in a world under our model for different terms x, l, l1 and t: 

   M, w ⊨ Present_at(x, l, t) if and only if 

   (Iv[x, w], Iv[l, w], Iv[t, w])  Iv[Present_at, w] 

 M, w ⊨  Present_at(x, l, t) if and only if 

   For some w1 such that (w,w1)  R it is the case that: 

    (Iv[x, w1], Iv[l, w1], Iv[t, w1])  Iv[Present_at, w1] 

 M, w ⊨  Present_at(x, l, t) if and only if 

   For every w1 such that (w,w1)  R it is the case that: 

    (Iv[x, w1], Iv[l, w1], Iv[t, w1])  Iv[Present_at, w1] 

 M, w ⊨  Present_at(x, l, t) if and only if 
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   (Iv[x, w], Iv[l, w], Iv[t, w])  Iv[Present_at, w] 

 M, w ⊨ Present_at(x, l, t)  Present_at(x, l1, t)  

   if and only if (Iv[x, w], Iv[l, w], Iv[t, w]) and  

   (Iv[x, w], Iv[l1, w], Iv[t, w])  Iv[Present_at, w] 

 M, w ⊨ Present_at(x, l, t)  Present_at(x, l1, t) if and only if either  

   (Iv[x, w], Iv[l, w], Iv[t, w]) or  

   (Iv[x, w], Iv[l1, w], Iv[t, w])  I[Present_at, w] 

Finally the interpretation of the quantifiers is presented. The universal quantifier is 

interpreted such that variables can take values from the worlds.  

 M, w ⊨ x. P(x) if and only if for every possible valuation that can be  

 given to x in the world w through Iv, it is the case that (Iv[x, w])  Iv[P] 

Similarly, the existential quantifier is interpreted thus: 

 M, w ⊨ x. P(x) if and only if there is a possible valuation such that can be  

 given to x in the world w through Iv, it is the case that (Iv[x, w])  Iv[P] 

Note that the model can be applicable to different terms x, ln-1, ln, tn-1 and tn with 

varying locations and time. 

It is important to emphasize that SQM is based on worlds in which the domains remain 

constant as opposed to worlds in which domains increase or decrease. As such the 

following Barcan‟ s axioms (Fitting, 1997) hold 

 x. P(x)   x. P(x). 

3.6 Modal Properties of the Spatial Qualification Model 

The logic of presence exhibits the basic property of Kripke‟s minimal system, K along 

with every other property of the standard S4 system: These properties are: 

 K: (  )  (  ) 

 T:    

 4:    
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However it falls short of being an S5 system because it does not satisfy the following 

property: 

 B:     

If this research considers the propositions formed from the Present-at relations, then 

one can argue that axioms K, T and 4 hold. For example, note that it is the case that if l 

is regionally part of l1, then any agent that is present at the location l is also present at 

location l1. 

  x, l, l1, t. (NTPP(l, l1)  TPP(l, l1)  l1= l)   

(Present-at(x, l ,t)  Present-at(x, l1, t)) 

Thus the following clearly hold: 

KP1  x, l, l1, t. (Present_at(x, l, t)  Present_at(x, l1, t))   

(Present_at(x, l, t)  Present_at(x, l1, t)) 

Similarly note that x1 is always collocated with x if and only if x1 is part of x. That 

axiom is stated as: 

  x, x1.  Part-of(x1, x)  l, t (Present-at(x, l, t)   Present_at(x1, l, t))   

Therefore, it is the case that: 

KP2  x, x1, l, t. (Present_at(x, l, t)  Present_at(x1, l, t))   

(Present_at(x, l, t)   Present_at(x1, l, t))  

In another vein, the fact that a body is in a certain location l at time t can imply that the 

same body is in a different location at a later time, if the body is in some kind of 

constant and predictable motion such as the case of planetary bodies. That is, if its 

trajectory is fixed, then: 

x, x1, l, l1, t.  Fixed_Trajectory(x)   

   Not_PP(l, l1)  Not_PP(l1, l)   

Present_at(x, l, t)  Present_at(x, l1, t) 

As such, if a body x is always in a fixed trajectory, it must be the case that: 

   x, x1, l, l1, t. (Present_at(x, l, t)  Present_at(x, l1, t))   

(Present_at(x, l, t)   Present_at(x1, l, t) ) 

Axioms KP1 and KP2 show that our system, under examination in light of the S4 and 

S5 systems of axioms, conforms to the properties of the Kripke minimal system. 
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In another vein, the only way a particular presence log, that is, the fact that x is present 

at a location l at time t, can occur in all possible worlds reachable from the current 

world if that presence log already occurs in the current world. 

TP  x, l, t. Present_at(x, l, t)  Present_at(x, l, t) 

Similarly, the fact that a presence log holds in all the worlds accessible from the 

current world implies it will be true in all worlds accessible from those worlds 

accessible from the current world. 

4P  x, l, t. Present_at(x, l, t)  Present_at(x, l, t)  

Axioms KP1, KP2, TP and 4P all show that the logic of presence we describe here 

constitute an S4 system of axioms. 

The comparison of SQM with S4 and S5 systems is as summarised in table 3.1. 

S5 system contains K, T and 4 of S4 and also axiom B: . From B, 

Present_at(x,l,t)  Present_at(x,l,t) does not hold in SQM. Since S4 has been 

proven to be sound and complete, it can also be concluded that SQM is sound and 

complete 

The model of time used in this research is a branching model of time. It is linear in the 

past and branches into the future.  Within each world there is a linear model of time. 

That line branches into the different accessible worlds in the future. 

Since the logical model will be a first order modal logic, the model theoretic nature of 

the logic needs to be clarified. Particularly, it is important to know the variability or 

otherwise of the domains in the world as the model moves from world to world. 

Another issue to be resolved is the nature of the constants in the logic. It is important 

to clarify whether they are definite constants or referents. 
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Table 3.1:  Comparison of SQM with S4  and S5 Modal System 

SQM S4 

Axiom 

Name 

Detail Axiom 

Name 

Detail 

KP  x, l, t. (Present_at(x,l,t)Present_at(x,l,t)) 

(Present_at(x,l,t)Present_at(x,l,t)) 

K ( ) 

() 

TP  x, l, t. Present_at(x,l,t)Present_at(x,l,t) T  

4P  x, l, t. Present_at(x,l,t)Present_at(x,l,t) 4  

 

 

 

 

 

 

 

3.7 Possible application domains for the Spatial Qualification Logic 



UNIV
ERSITY

 O
F I

BADAN LI
BRARY 

86 

 

With the question “is it possible for an account holder who made cash transaction 

using his/her debit card at First Bank Automated Teller Machine (ATM), University of 

Ibadabn (UI) branch, at 12 noon to be present at UBA ATM machine, Lagos, for 

another cash transaction at 12.15?”  Using commonsense, to be able to tell whether it is 

possible or impossible, one must have known that land transportation is the fastest 

available means from Ibadan to Lagos and the minimum time that can be used by this 

means on that route is 2 hours.  Since the duration between the transaction at Ibadan 

and the one at Lagos is 15 minutes, one can easily tell that it is not possible for the 

account holder to have arrived Lagos in 15 minutes to have embarked on another 

transaction. 

Without prior knowledge of how long it can take for one to be in Lagos and the time 

the account holder made the last transaction at Ibadan, it will be difficult for one to tell 

the possibility or impossibility of being present at Lagos.  The possibility of being 

present at a location remains valid even when a state at some time points, seen to be 

possibly true is not actually true.  The anchoring relations of Galton are somewhat 

embedded in this logical model.  This means that an object who is said to be possibly 

present at another known state at a certain time might as well be anchoring around the 

previous state without getting to the designated state. 

Another domain where SQM could be applied to is the alibi reasoning domain which 

often features in the court during trials. An instance of such court case has to do with 

investigating the actual location of the accused person at the time of incidence from 

prior spatial knowledge.  All possible worlds with their reachability can be determined 

using the spatial qualification model. 

Also, planning, that involves a transportation process is another domain where SQM 

can be applied to.  A typical case of this problem is seen in the TRAINS project 

(Traum et al., 1991).  An application to the planning domain with deadlines is 

considered in subsequent chapters.   A proof system for the formalised logical model 

of the spatial qualification (SQM) is developed in chapter four. 
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W1 

x,l,t 

x,l2,t2 

 

x,l3,t3 

x,l4,t4 

x,l7,t7 

x,l6,t6 

x,l5,t5 

Figure 3.9: Possible World branching into different accessible worlds in the future   
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W4 

W5 

W6 
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CHAPTER FOUR 

PROOF SYSTEM OF THE SPATIAL QUALIFICATION LOGIC 

4.1 Introduction 

The tableau proof rules for the quantified modal logic are listed as they are applicable 

to the proof system of SQM.  This is followed by some stated lemmas and the 

corresponding proofs.  The decidability as well as the soundness and completeness 

proof of the SQM system is also described in this chapter. 

4.2 Tableau Proof Rules 

Since SQM follows the syntax of quantified modal logic which combines features of 

first-order and that of modal logic, our proof rules therefore will combine the tableau 

rules in propositional, first-order and modal logic.  Hence, the following tableau rules 

are applicable to the proof system of SQM. 

(i) Negation rules 

 

 

(ii) Conjunctive rules 

 

 

 

(iii) Disjunctive rules 

 

 

 

 

T ¬A 

 F A 

T  (A  B) 

T A 
T B 

T  (A  B) 

 
T A T B 

T  (A  B) 

 
F A T B 

T  (A  B) 

 
T A F B 
T B F A 

F ¬A 

T A 

F  (A  B) 

 
F A F B 

 

F  (A  B) 

T A 
T B 

F(A  B) 

T A 
F B 

F  (A  B) 

 
T A F A 
F B T B 
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(iv) Universal rules 

 

 

for any term t in the language. 

(v) Existential rules 

 

 

for a new constant c.  

(vi) Necessity rules 

 

 

 

(vii) Possibility rules 

 

 

4.3 Tableau proofs for satisfiability of SQM 

To prove that a formula, B is a logical consequence of a set of formula, A1 ... Ak, the 

following lemmas are hereby stated as they make up the proof system for the spatial 

qualification logic.  

Lemma 4.1: 

Given that: 

{Present_at(x,l1,t1), x,l1,l2,t1,t2. l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)), l1=l2, 

t1<t2} ⊦  ◊Present_at(x,l2,t2) 

Proof: 

To proof by contradiction that the above lemma is true, we start by saying that the set 

of axioms entails ¬◊Present_at(x,l2,t2). Including the negated axiom to the set and 

proving using tableau rules is as analysed in figure 4.1 and completed in figure 4.2.  

T x  A(x) 

T A(t) 

F x  A(x) 

F A(t) 

T x  A(x) 

T A(c) 

F x  A(x) 

F A(c) 

F ◊A 

Fk A 

T □A 

Tk A 

F □A 

Fk A 

T ◊A 

Tk A 
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Since both branches of the above tableau do not lead to a closure, we look for a way of 

extending the branch that is still open.  

From the system of axioms in SQM, axiom TA3 defines Reachable to be  

Reachable(x,l1,l2,(t1,t2))(t1<t2(Present_at(x,l1,t1)◊Present_at(x,l2,t2)). 

By equivalence, we have that 

Reachable(x,l1,l2,(t1,t2)) = (t1<t2 (Present_at(x,l1,t1)◊Present_at(x,l2,t2)).  

By substitution rule, (t1<t2(Present_at(x,l1,t1)◊Present_at(x,l2,t2)) replaces 

Reachable(x,l1,l2,(t1,t2)) in the above tableau and thus extends the branch further in 

other to check for its closure as shown in the tableau in figure 4.2. 

From the closed tableau in figure 4.2, the set of axioms in node (1) is expanded to have 

nodes (2), (3), (4), (5) and (6).  By applying necessity rule from (6), we have item (7). 

Node (8) is from node (3) by universal rule.  By conjunctive rule, node (8) opens into 

two branches with nodes (9) and (10).  Nodes (9) also opens into two branches with 

nodes (11) and (12) and nodes (11) and (5) closes as well as nodes (12) and (4) since 

there is a contradiction.   

Extending node (10) as explained in the tableau in figure 4.1, we have node (10) 

replaced as shown in the tableau in figure 4.2.  By substitution rule, we have node (13) 

from (10). Again by conjunctive rule from node (13), we have nodes (14) and (15).  

Node (15) opens into two branches with nodes (16) and (17) by conjunctive rule. By 

possibility rule from (17), we have node (18).  All branches in the tableau lead to 

closure as nodes (17) and (2) close and also nodes (18) and (7) close.   

The closure of the tableau of the contradiction shows that the proof of the original set 

of formulas is complete and that SQM logic is satisfiable with the given statement in 

lemma 4.1. 
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{Present_at(x,l1,t1), x,l,t1,t2. . l1=l2  t1<t2  Reachable(x,l1,l2,(t1,t2)), t1<t2, 

 l1=l2, ¬◊Present_at(x,l2,t2)} 

 

Present_at(x,l1,t1) 

x,l1,l2,t1,t2. l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 

t1 < t2 

l1 = l2      

¬◊Present_at(x,l2,t2) 

¬Present_at(x,l2,t2) 

l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 

 

¬ (l1=l2   t1<t2) Reachable(x,l1,l2,(t1,t2)) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

¬ (l1=l2) ¬ (t1<t2) 

(10) 

(11) (12) 

Figure 4.1: Tableau Proof of Axiom TA4 (open) 



UNIV
ERSITY

 O
F I

BADAN LI
BRARY 

92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

{Present_at(x,l1,t1), x,l,t1,t2. . l1=l2  t1<t2  Reachable(x,l1,l2,(t1,t2)), t1<t2, 

 l1=l2, ¬◊Present_at(x,l2,t2)} 

Present_at(x,l1,t1) 

x,l1,l2,t1,t2. l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 

t1 < t2 

l1 = l2      

¬◊Present_at(x,l2,t2) 

¬Present_at(x,l2,t2) 

l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 

 

Reachable(x,l,l,(t1,t2))= (t1<t2(Present_at(x,l1,t1) 

◊Present_at(x,l2,t2)) 

 

(t1<t2(Present_at(x,l1,t1)◊Present_at(x,l2,t2)) 

t1 < t2  

(Present_at(x,l1,t1)  ◊Present_at(x,l2,t2)) 

 

 
 ¬Present_at(x,l1,t1) 

 

 

 

◊Present_at(x,l2,t2) 

 

 

Present_at(x,l2,t2) 

 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(10) 

(13) 

(14) 

(15) 

(16) (17) 

(18) 

(8) 

¬ (l1=l2   t1<t2) (9) 

¬ (l1=l2) ¬ (t1<t2) (11) (12) 

Figure 4.2: Tableau Proof of Axiom TA4 (closed) 
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Lemma 4.2: 

Given that: 

{Present_at(x,l1,t1), Reachable(x,l1,l2,(t1,t2)), Reachable(x,l2,l3,(t2,t3)),  t1<t2<t3, 

Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) Reachable(x,l1,l3,(t1,t3))} ⊦  

◊Present_at(x,l3,t3) 

Proof: 

The proof is as shown on figure 4.3 and completed in figure 4.4 

Lemma 4.3: 

Given that: 

{Present_at(x,l1,t1),x,l1,l2,t1,t2. l1=l2  t1<t2  Reachable(x,l1,l2,(t1,t2)), t1<t2}  

⊬  ◊Present_at(x,l2,t2) 

Proof: 

To proof by contradiction that lemma 4.3 is true, we start by saying that the set of 

axioms entails ¬(¬◊Present_at(x,l2,t2)). Including to the set and proofing using tableau 

rules is as shown in figure 4.5 and completed in figure 4.6.  

By employing substitution rule as seen in the proof of lemma 4.1 and replacing, 

Reachable(x,l1,l2,(t1,t2)) of node (11) in figure 4.5 with 

(l1=l2t1<t2(Present_at(x,l1,t1)◊Present_at(x,l2,t2)), and thus extending the branch 

further leading to closure as shown in figure 4.6. 

From tableau in figure 4.6, the set of axioms in node (1) is expanded to have nodes (2), 

(3), (4), (5) and (6).  Node (7) is obtained by applying double negation rule on node 

(6). And by necessity rule from node (7), we have node (8). Node (9) is from node (3) 

by universal rule.  By conjunctive rule, node (9) opens into two branches with nodes 

(10) and (11) and by disjunctive rule node (10) extends to nodes (12) and (13).  Nodes 

(12) and node (5) close and nodes (13) and (4) also close.   

As seen in figure 4.6, we have node (11) replaced as shown in the tableau in figure 4.4.  

By substitution rule, we have node (14) from node (11). Again, by conjunctive rule 

from node (14), we have nodes (15) and (16).  Node (16) opens into two branches with 

nodes (17) and (18) by conjunctive rule. By possibility rule from (18), we have node 

(19).  Nodes (17) and (2) close but node (19) is open without a contradiction.  
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Reachable(x,l1,l3,(t1,t3)) 
 

 

{Present_at(x,l1,t1), Reachable(x,l1,l2,(t1,t2)),Reachable(x,l2,l3,(t2,t3)),  t1<t2<t3, 

Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) Reachable(x,l1,l3,(t1,t3)), 

 ◊Present_at(x,l3,t3)} 

 

Present_at(x,l1,t1) 

Reachable(x,l1,l2,(t1,t2)) 

Reachable(x,l2,l3,(t2,t3)) 

t1 < t2 < t3 

x,l1,l2,l3,t1,t2,t3. Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) 

 Reachable(x,l1,l3,(t1,t3)) 

 

¬◊Present_at(x,l3,t3) 

¬Present_at(x,l3,t3) 

Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) 

 Reachable(x,l1,l3,(t1,t3)) 

 

 

l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 

 

(1) 

(6) 

Figure 4.3: Tableau Proof of Axiom TA10 (open) 

(2) 

(3) 

(4) 

(5) 

(7) 

(10) 
(11) 

(8) 

¬ (Reachable(x,l1,l2,(t1,t2)) 

 Reachable(x,l2,l3,(t2,t3)) 

) 

(9) 

¬Reachable(x,l1,l2,(t1,t2)) ¬Reachable(x,l2,l3,(t2,t3)) 

(12) (13) 
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Reachable(x,l1,l3,(t1,t3))= t1<t3  

Present_at(x.l1,t1)  Present_at(x,l3,t3) 

(t1<t3(Present_at(x,l1,t1) 

◊Present_at(x,l3,t3)) 

 

t1 < t3  

(Present_at(x,l1,t1)  ◊Present_at(x,l3,t3)) 

 

  ¬Present_at(x,l1,t1) 

 

 

 

◊Present_at(x,l3,t3) 

 

 

Present_at(x,l3,t3) 

 

 

{Present_at(x,l1,t1), Reachable(x,l1,l2,(t1,t2)),Reachable(x,l2,l3,(t2,t3)),  t1<t2<t3, 

Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) Reachable(x,l1,l3,(t1,t3)), 

 ◊Present_at(x,l3,t3)} 

 

Present_at(x,l1,t1) 

Reachable(x,l1,l2,(t1,t2)) 

Reachable(x,l2,l3,(t2,t3)) 

t1 < t2 < t3 

x,l1,l2,l3,t1,t2,t3. Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) 

 Reachable(x,l1,l3,(t1,t3)) 

 

¬◊Present_at(x,l3,t3) 

¬Present_at(x,l3,t3) 

Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) 

 Reachable(x,l1,l3,(t1,t3)) 

 

 

l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(9) 

(11) 

(8) 

¬ (Reachable(x,l1,l2,(t1,t2)) 

 Reachable(x,l2,l3,(t2,t3)) 

) 

(10) 

¬Reachable(x,l1,l2,(t1,t2)) ¬Reachable(x,l2,l3,(t2,t3)) 

(12) (13) 

Figure 4.4: Tableau Proof of Axiom TA10 (closed) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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{Present_at(x,l1,t1), x,l1,l2,t1,t2. l1=l2  t1<t2  Reachable(x,l1,l2,(t1,t2)), t1<t2, 

l1=l2,(◊Present_at(x,l2,t2))} 

Present_at(x,l1,t1) 

x,l,t1,t2. l1=l2  t1<t2  Reachable(x, l1,l2,(t1,t2)) 

t1<t2  

l1=l2  

¬(◊Present_at(x,l2,t2)) 

Present_at(x,l2,t2) 

Present_at(x,l2,t2) 

l1=l2  t1<t2  Reachable(x, l1,l2,(t1,t2)) 

 

¬ (l1=l2  t1<t2) Reachable(x,l1,l2,(t1,t2)

) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(10) 

(9) 

(8) 

(11) 

¬ (l1=l2) ¬ (t1<t2) (12) (13) 

Figure 4.5: Tableau Proof of the Negation of Axiom TA4 (open) 
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(16) 

Reachable(x,l,l,(t1,t2))= (t1<t2(Present_at(x,l1,t1) 

◊Present_at(x,l2,t2)) 

 

(t1<t2(Present_at(x,l1,t1)◊Present_at(x,l2,t2)) 

t1 < t2  

(Present_at(x,l1,t1)  ◊Present_at(x,l2,t2)) 

 

  ¬Present_at(x,l1,t1) 

 

 

 

◊Present_at(x,l2,t2) 

 

 

Present_at(x,l2,t2) 

 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(11) 

(9) 

(15) 

(14) 

  (17) (18) 

(19) 

(8) 

¬ (l1=l2   t1<t2) (10) 

¬ (l1=l2) ¬ (t1<t2) (12) (13) 

Figure 4.6: Tableau Proof of the negation of Axiom TA4 (open) 

{Present_at(x,l1,t1), x,l,t1,t2. . l1=l2  t1<t2  Reachable(x,l1,l2,(t1,t2)), t1<t2, 

 l1=l2, ,(◊Present_at(x,l2,t2))} 

 

Present_at(x,l1,t1) 

x,l1,l2,t1,t2. l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 

t1 < t2 

l1 = l2      

¬(◊Present_at(x,l2,t2)) 

Present_at(x,l2,t2) 

Present_at(x,l2,t2) 

l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 
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Since the branches in the tableau of figure 4.6 do not all lead to closure, the proof is 

therefore incomplete showing that the negation of the assertion is not provable. This 

then shows that the original axiom is invalid since its contradiction did not terminate 

with a closure on all the branches.   

4.4 Decidability of the SQM system 

The closures of some of the tableaus give the validity of the original axioms whose 

contradictions were considered.  Also, the tableau showing the non-closure, on the 

other hand, gives the non-validity of the original axiom.  The non-determination of the 

validity of all the axioms in the SQ system of axioms demonstrates the semi-

decidability of SQ logic in SQM.  Hence, Quantified modal logic is semi-decidable. 

The decidability of SQ logic is clearly described from the tableau proof system in 

figures 4.1 to 4.6.  The decision procedure shows that tableau proof method does not 

work for some axioms in the logic.  This is obvious since the logic uses the quantified 

modal logic which is the hybridization of the known undecidable first-order logic and 

modal logic. 

From this proof system, it is possible to decide the possibility of an agent being present 

at a location at a certain time, if it is possible for that agent to be present at that 

location at the time, t given the antecedents. This shows that the possibility of an 

agent‟s presence at a certain location and time was only provable in the affirmative, 

while its negation was not. However, it is not possible to infer the fact that it is not 

possible for an agent to be present at a certain location and at a certain time. The 

reason is that, most of our axioms are implications and not equivalence. 

The next chapter gives a more detailed case study with a successful application of the 

SQM in planning as a pilot test for validity of our model in solving real world 

problems. 
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4.5 Soundness of SQM Proof System 

To further prove that the SQM proof system (SQMp) is sound, the satisfiability of the 

set of formulae or sentences is checked in line with the closure of a tableau with 

contradiction forming part of the set of sentences.  This showed that the set is not 

satisfiable as earlier pointed out. 

This corresponds with the soundness theorem stated by Sabri (2009) as follows: 

Let {S1,…,Sn} be a finite set of (signed and unsigned) sentences with parameters. 

If there exist a finite closed tableau starting with {S1,…,Sn}, then {S1,…,Sn} is 

not satisfiable. 

Proof: 

Let  be a closed tableau starting with {S1,…,Sn} with  = 0; 1,…, m finite sequence 

of tableaux such that: 0 = {S1,…,Sn} and each k+1 is an intermediate extension of k. 

That is, k+1 is obtained from k by applying a tableau rule to a path of .  If k is 

satisfiable, then k+1 is satisfiable. 

Considering the SQMp, we have some representative cases for each tableau rule as 

follows: 

Case 1: Suppose that k+1 is obtained from k by applying the necessity rule 

    

   A 

   : 

    A 

 to a path in k.  It follows that k+1 is satisfiable since A = A= T is satisfiable 

in at least one path in tk. 

Case 2:  Suppose that k+1 is obtained fron k by applying the possibly rule 

 

   ◊A 

   : 

    A 
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 to a path in k.  It follows that k+1 is satisfiable since ◊A = A= T is satisfiable 

in at least one path in k. 

More of the representational cases as they apply to First-Order logic were described by 

Sabri (2009). 

Suppose {S1,…,Sn} is satisfiable, then 0 is satisfiable, and by induction on k, it 

follows that all of the k are satisfiable.  In particular, m= is satisfiable, but since  is 

closed, this is impossible. 
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CHAPTER FIVE 

SPATIAL QUALIFICATION REASONING IN PLANNING 

5.1 Introduction 

This chapter gives an overview of planning and highlights related projects in planning 

domain. The overview clearly describes the need for the spatial qualification logic in 

the domain of discourse.  An instance showing the application of SQ logic on product 

distribution from known locations within University of Ibadan is given with detailed 

case studies using the SQ logic. Results from the analysis of these case studies are also 

shown and discussed. 

5.2 Planning and the Spatial Qualification Logic 

There are several preconditions to actions and the impossibility of knowing all is 

referred to as the qualification problem in AI (Thielscher, 2001). One of such 

preconditions is to determine whether or not an agent is spatially qualified to carry out 

an action.   As the need to reason about plans ahead of their execution increases, the 

need to represent knowledge about spatial domains increases as well.  A plan is 

defined as an argument that the execution of its actions will result in the achievement 

of its goals given the assumptions on which it is based (Ferguson, 1995).  This brings 

about the need to reason about an agent‟s spatial qualification to carry out actions in 

this domain. In planning domain, the planner must be able to assess a plan‟s potentials 

to succeed in terms of the various qualifications for actions that make up the plan. 

While the relationship between planning and temporal reasoning has been addressed 

(Allen, 1991), the connection between planning and spatial reasoning has not been 

explored.  
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At the University of Rochester, in the 1990s, researchers undertook the building of a 

conversationally proficient intelligent planning assistant as part of the TRAINS project 

(Allen et al., 1991). The TRAINS project domain “is a transportation world with cities, 

rail links between them, engines, boxcars and the like to move things around and a 

variety of commodities” (Ferguson, 1995). This TRAINS project proposed a solution 

to the problems of the domain through mixed initiative planning that involved using 

dialogues to carry out various kinds of plan inference. 

To get an idea of the kind of plans that the TRAINS system needs to reason with, this 

research presents an abridged form of a dialog from the TRAINS domain: 

We better ship a boxcar of oranges to Bath by 8 am. There are some oranges at 

Corning and a boxcar at Danville. So we need an engine to move the boxcar. 

So we should move the engine at Avon, Engine e1, to Danville to pick up the 

boxcar there and move it from Danville to Corning, Load up some oranges into 

the boxcar and then move it on to Bath.  

The kind of plans in this domain involves both the need to cover distances as well as 

do so within a certain deadline. Not only should the boxcar of oranges arrive at Bath, it 

should arrive by 8 am. In order for the engine moving the boxcar full of oranges to 

arrive bath by 8am, it must be fully loaded with oranges, ready to leave Corning by 

7am if it takes an hour to drive between Corning and Bath. Similarly if it takes fifteen 

minutes to load a boxcar of oranges, the empty boxcar driven by engine e1, must arrive 

Corning from Danville by 6:45 am.  It is obvious that one of the major keys to 

reasoning about the feasibility or otherwise of these plans is to be able to reason about 

the engine to make each of its assigned journeys within a time limit.  

Planning is a well-known problem in the field of AI. As such reasoning about plans is 

an equally important task. Attempts to address this problem in the literature uses 

preferences and time-dependent continuous costs (Benton et al., 2012); time windows 

(Braysy and Gendreau, 2005); and adversarial abduction problems (Shakarian et al., 

2011).   Plans are dynamic and require monitoring and re-planning.  

In this chapter, the problem of spatial qualification of agents is considered in a 

planning domain requiring deadlines where the planner has the knowledge of the 

agents‟ current location and time. Given the location of agents, the spatial qualification 
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reasoner introduced in this work will help the agent reason about the possibility of 

being present at another location at some other time in order to make a delivery.   

But the goal of this work differs from that of the TRAINS project which focused on 

developing an intelligent planning assistant that is conversationally proficient in 

natural language to predict future states of the world in the absence of complete 

knowledge (Allen and Schubert, 1991). Allen (1991), in his temporal planning work 

highlighted the preconditions for opening the door latch without considering the spatial 

qualification of the agent as one of the preconditions. This chapter is aimed at deciding 

the spatial qualification of an intelligent agent i.e. to determine if it is possible for the 

agent to be present at the desired location at a certain future time as a required 

precondition to carry out the action at that time.   To assess the existing plan and re-

plan to meet the domain‟s need at any time in case of uncertainty requires that we 

investigate the possibility of the vans to get to any of the hostel that has an urgent need 

to meet the deadline.  This chapter is aimed at providing a planning reasoner that 

assists in the investigation using the spatial qualification model. 

Planning the distribution of these products requires that the managing agent should 

take the following steps: 

(i) Know the position of things according to previous plan. 

(ii) Identify where there is need for re-planning 

(iii) Draw up a new plan when necessary. 

Steps (ii) and (iii) cannot be carried out except step (i) is done.  Step (i) requires 

reasoning such as it applies to the logic of spatial qualification, which helps in the 

assessment of the existing plan. Therefore, the planner sends the travel plan to the 

SQM reasoner as input that is considered by SQM for validity check.  If the plan is 

valid, then, it is slated for implementation, otherwise, it is slated for re-planning.  

These feedbacks are directed to the planner for information and further action.  Figure 

5.1 gives the framework of how SQM is applied in planning for interaction with the 

planning agent.  
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This interaction of the SQM with the planning agent does not eschew the underlying 

concept of mixed-initiative planning used in the TRAINS project.  Some of the lessons 

from the mixed-initiative planning used in the TRAINS project include the 

fundamental process of communication based on defeasible reasoning, where 

conclusions are subject to revision given new information or more time to reason.  The 

defeasibility is as a result of the opacity and ambiguity of communication. 

Although the communication aspect of the TRAINS project promotes collaborative 

reasoning, SQM seeks to address other sources of defeasibility such as incomplete 

knowledge and uncertain effects of actions other than its complexity, using the 

modalities in Modal Logics.  The distribution process of Coca cola to hostels in 

University of Ibadan is a fixed multi-agent domain like the TRAINS domain.   

5.3 Application of SQM in Coca-Cola Distribution from Mini Depot to hostels 

within University of Ibadan 

Considering the distribution of Coca-Cola product from the Coca-Cola Mini Depot 

(CCMD) to all the hostels within University of Ibadan campus, the Mini Depot is 

known to have two pick-up vans meant for these distribution processes. This means 

that there are multi-agent actions taking place at varying locations and times in the 

problem domain.  The domain agents are mainly the two pick-up vans and the 

supervisor agent that require intelligence to monitor and re-plan based on urgent 

request and need from any of the hostels.  The distribution processes follow a star-like 

structure from CCMD to the various hostels, about 12 in number, and from one hostel 

to the other following the given designated routes. 

Route Designation: 

The route designation described here is applicable only to this research work.  Due to 

the carrying capacity of the pick-up vans and the locations of the hostels, each van is 

assigned to a designated route which includes three hostels each based on their 

geographic locations.    The designated routes for routines supply of product are: 
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R1:  CCMD    MH  TrH  TdH  CCMD 

R2: CCMD   QED  KH  BH  CCMD 

R3: CCMD   TBH  ZH  IH  CCMD 

R4: CCMD   QIH  NH  AH  CCMD 

Figure 5.2 gives the representation of these designated routes as they traverse from 

CCMD to the hostels for product distribution.  Although this is based on the 

assumption that the driver of the van has to visit all the nodes in each of the routes, 

there are other possible ways.  Some of the possible routes through which nodes in the 

designated routes can be visited are shown in figure 5.3.    

The actual locations of CCMD and hostels within University of Ibadan are shown in 

the skeletal diagram in figure 5.4. The distances apart from one location to another are 

as obtained from Google Maps (Google-Maps, 2012).  Figure 5.5 shows a section of 

the world map showing some of the nodes and the routes within University of Ibadan.  

Google maps uses the great circle display and distance calculation which returns the 

shortest distance between any two points on the surface of the sphere measured along a 

path on the surface of the sphere with centers that are coincident with the center of the 

sphere, different from Euclidean distance which measures the length of a straight line 

from one point to the other. 

Spatially qualifying an agent involves the temporal knowledge of the world.  This 

SQM application assumes the speed limit of 20km/sec for the pick-up vans to traverse 

on roads in the university campus.  Hence, the time required to cover the obtained 

distances for each of the routes in equation (5.2) can be computed from equation (5.1)  

 Speed = distance / time  ………………..  (5.1) 

Therefore, 

 Time =   distance /speed  ………………..  (5.2) 
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Figure 5.1: An Application Framework of SQM in Planning 
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     (a)  CCMD    MH  TrH  TdH  CCMD 

 

 

 

(b)  CCMD   MH  TrH  TdH 

 

 

 

  

(c)   CCMD   MH  TrH  TdH 

 

 

 

 

 

(d)   CCMD   MH  TrH  TdH 

 

 

 

 

 

(e)   CCMD   MH  TrH  TdH 

 

 

 

 

 

Figure 5.3: Possible Routes for Nodes Visitation in R1 
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Figure 5.4:  Skeletal Diagram showing designated routes and locations of the hostels in University of Ibadan 
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Figure 5.5: Screen shot of Google Maps Distance Calculator showing some routes in University of Ibadan 
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Thus, the needed components of the domain knowledge for the application of the 

spatial qualification logic are the distances of the routes and the time it takes to 

traverse on that route.  This has been derived as given in table 5.1. 

Measuring the distances between the designated routes and calculating the times 

required to cover the distances results in the summary presented in table 5.2. 

For additional information on routes other than the designated routes and intra-routes 

for routine distribution, the matrix representation in table 5.3 is hereby given.  Table 

5.4 also provides the matrix with necessary information on inter-route distribution. 
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Table 5.1: Hostels reachable from CCMD in University of Ibadan with their 

Codes/Abbreviations, distances and their corresponding times 

Name of Hostel Hostel Codes/ 

Abbreviations 

Distances 

(Kilometers) 

Time 

Hours Minutes 

Queen Elizabeth II Hall  QEH 1.080 0.0540 3.240 

Tedder Hall TdH 0.802 0.0401 2.406 

Mellanby Hall MH 0.782 0.0391 2.346 

Independence Hall IH 1.541 0.0771 4.626 

Sultan Bello Hall BH 1.053 0.0527 3.162 

Tafawa Balewa Hall TBH 1.143 0.0572 3.432 

Kuti Hall KH 1.081 0.0541 3.246 

Trenchard Hall TrH 0.834 0.0417 2.502 

New Hall NH 1.617 0.0809 4.854 

Queen Idia Hall QIH 1.690 0.0845 5.070 

Obafemi Awolowo Hall AH 2.062 0.1031 6.186 

Nnamdi Azikiwe Hall ZH 1.323 0.0662 3.972 
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Table 5.2: Route Descriptions for product distribution from CCMD through the routine 

designated reachable routes with their distances and corresponding time in 

University of Ibadan 

 

Route 

Code 

Reachable 

Paths 

Distances 

(Kilometers) 

Time 

Hours Minutes 

R1 CCMD – MH 0.782 0.039 2.34 

MH –TrH 0.062 0.003 0.18 

TrH – TdH 0.143 0.007 0.42 

TdH – CCMD 0.802 0.040 2.40 

R2 CCMD – QEH 1.080 0.054 3.24 

QEH – KH 0.278 0.014 0.84 

KH – BH 0.181 0.009 0.54 

BH – CCMD 1.053 0.053 3.18 

R3 CCMD – TBH 1.143 0.057 3.42 

TBH – ZH 0.184 0.009 0.54 

ZH – IH 0.227 0.011 0.66 

IH – CCMD 1.541 0.077 4.62 

R4 CCMD – QIH 1.690 0.085 5.10 

QIH – NH 0.069 0.004 0.24 

NH – AH 0.531 0.027 1.62 

AH – CCMD 2.062 0.103 6.18 
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Table 5.3: Route Descriptions for product distribution from CCMD through the 

Designated reachable intra-routes with their distances and corresponding 

time in University of Ibadan 

ROUTE 

CODE 

HOSTEL 

CODE 

CCMD MH TrD TdH 

R1 CCMD 0/0    

MH 0.782/2.34 0/0   

TrD 0.844/2.52 0.662/0.18 0/0  

TdH 0.987/2.94 0.205/0.60 0.143/0.42 0/0 

R2  CCMD QEH KH BH 

CCMD 0/0    

QEH 1.080/3.24 0/0   

KH 1.358/4.08 0.278/0.84 0/0  

BH 1.439/4.62 0.459/1.38 0.181/0.54 0/0 

R3  CCMD TBH ZH IH 

CCMD 0/0    

TBH 1.143/3.42 0/0   

ZH 1.327/3.96 0.184/0.54 0/0  

IH 1.554/4.62 0.411/1.20 0.227/0.66 0/0 

R4  CCMD QIH NH AH 

CCMD 0/0    

QIH 1.690/5.10 0/0   

NH 1.759/5.34 0.069/0.24 0/0  

AH 2.290/6.96 0.600/1.86 0.531/1.62 0/0 
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Table 5.4: Route Descriptions for product distribution from CCMD through the designated reachable inter-routes with their distances and 

corresponding time in University of Ibadan 

HOSTEL 

CODE 

CCMD MH TrH TdH QEH KH BH TBH ZH IH QIH NH AH 

CCMD 0/0             

MH 0.782/2.34 0/0            

TrH 0.844/2.52 0.662/0.18 0/0           

TdH 0.987/2.94 0.205/0.60 0.143/0.42 0/0          

QEH 1.080/3.24 0.350/1.05 0.291/0.87 0.428/1.28 0/0         

KH 1.358/4.08 0.300/0.90 0.246/0.74 0.283/0.85 0.278/0.84 0/0        

BH 1.439/4.62 0.341/1.02 0.320/0.96 0.259/0.78 0.459/1.38 0.181/0.54 0/0       

TBH 1.143/3.42 0.416/1.25 0.560/1.68 0.348/1.04 0.470/1.41 0.185/0.56 0.092/0.27 0/0      

ZH 1.327/3.96 0.587/1.76 0.558/1.67 0.518/1.55 0.599/1.80 0.328/0.98 0.257/0.77 0.184/0.54 0/0     

IH 1.554/4.62 0.786/2.36 0.735/2.21 0.729/2.19 0.700/2.10 0.501/1.50 0.484/1.45 0.411/1.20 0.227/0.66 0/0    

QIH 1.690/5.10 0.961/2.88 0.925/2.78 0.880/2.64 0.892/2.68 0.681/2.04 0.636/1.91 0.547/1.64 0.378/1.13 0.195/0.59 0/0   

NH 1.759/5.34 0.906/2.72 0.874/2.62 0.829/2.49 0.863/2.59 0.633/1.90 0.578/1.73 0.497/1.49 0.320/0.96 0.185/0.56 0.069/0.24 0/0  

AH 2.290/6.96 1.404/4.21 1.373/4.12 1.328/3.98 0.392/1.18 1.156/3.47 1.077/3.23 0.998/2.99 0.827/2.48 0.719/2.16 0.600/1.86 0.531/1.62 0/0 



UNIV
ERSITY

 O
F I

BADAN LI
BRARY 

115 

 

5.4 Spatial Qualification Logic Case Studies 

In the case study under consideration in this research, the existing plan schedule and 

the incoming activity to be incorporated into the plan is assumed to be given as 

follows.  

Plan Schedule: 

The schedule by the managing agent is that pick-up van1 should service routes R1 and 

R3 from Tuesdays to Fridays while van2 should service routes R2 and R4 from 

Mondays to Thursdays respectively.  The off duty days for the pick-up vans are meant 

for the vans to be serviced and kept clean.  But when there is an urgent request, the 

manager can reason out the solution and can handle it otherwise.  

Activity: 

If an order is made that requires products to be delivered to BH in R2 not later than 

10:00 a.m., is it possible for any of the two vans to make the delivery on or before the 

set time? 

Plan Assessment using SQM: 

The assessment of the existing plan can be done after randomly considering the 

following cases from the possible combinations of the vans‟ routes as (R1, R2), (R1, 

R3), (R1, R4), (R2, R3), (R3, R4) and (R4, R2) for van1 and van2 respectively as 

obtained in cases 1, 2 and 3 summarised in tables 5.5, 5.6, 5.7 and 5.8. 

Case 1:  

Given that van1 has departed to R1 at 7:30a.m and also that van2 has departed to R4 at 

8:00a.m; and assuming that each van uses minimum of 30 minutes to offload the 

products at a particular hostel.   

The logic of spatial qualification in chapter three can be applied as it will help the 

managing agent to assess existing plan and determine the possibility of delivering the 

product to BH by 10:00 a.m. With the logic, the managing agent can decide which of 

the vans will be available to make the delivery without disrupting the existing plan.  In 
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the absence of none, the managing agent will decide which of them to use with less 

disruption, to ease the re-planning process. 

The application of axioms TA1 and TA2 of SQ logic gives further proofs of the 

possibility of the two vans to remain present at same location at another time greater 

than the former.  

 Present_at(van1,CCMD,7:30)  Present_at(van1,CCMD,7:30) 

 Present_at(van2,CCMD,8:00)  Present_at(van2,CCMD,8:00) 

 Present_at(van1,CCMD,7:30)     (t. 7:30 < t   

   Present_at(van1,CCMD,10:00)) 

 Present_at(van2,CCMD,8:00)   

    (t. 8:00 < t   

    Present_at(van2,CCMD,10:00)) 

That is to say that knowing them to depart from CCMD also means it is possible for it 

to still be present at CCMD at a later time for some reasons.  Hence, axiom TA1 and 

TA2 holds. 

Considering Van1: 

Using axiom TA3, it is possible for van1 known to be present at CCMD at 7:30 to be 

present at another location, say MH, at a later time. 

 Reachable(van1, CCMD, MH, (7:30, (7:30+0:03)))   

   7:30 < 7:33   (Present_at(van1, CCMD, 7:30)  

   Present_at(van1, MH, 7:33)) 

If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 

 Reachable(van1,CCMD,MH,(7:30,7:33))  

    Reachable(van1, MH, CCMD, (7:30,7:33)) 
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If van1 can reach MH from CCMD at an interval (7:30, 7:33), then it means that van1 

can still be spatially qualified at different time interval as long as the interval is the 

same as the former, following axiom TA6. 

 Reachable(van1, CCMD, MH, (7:30, 7:33))  

   (t3, t4. t3 < t4  ((t4- t3)  (7:33 - 7:30))) 

   Reachable(van1, CCMD, MH, (t3, t4))) 

Since van1 can reach MH from CCMD at time interval of (7:30, 7:33), again it can 

reach TrH from MH at interval (8:03, 8:04) with the additional time of 30 minutes for 

off-loading, then it means that van1 can reach TrH from CCMD at interval (7:30, 

8:04).  Then TA10 holds following the transitive axiom for reachability as follows 

 Reachable(van1, CCMD, MH, (7:30,7:33))   

   Reachable(van1, MH, TrH, (8:04,8:05))  

    Reachable(van1, CCMD, TrH, (7:30, 8:05)). 

 Reachable(van1, MH, TrH, (8:04,8:05))   

  Reachable(van1, TrH, TdH, (8:35, 8:36))   

   Reachable(van1, MH, TdH, (8:04, 8:36)). 

And from TA3 we have that: 

 Reachable(van1, TdH, CCMD, (9.06,9:09))  

   9.09 < 10:00  (Present_at(van1, CCMD, 9:09) 

   Present_at(van1, BH, 10:00)). 

Thus, concluding that it is possible for van1 to reach BH at 10:00a.m without actually 

knowing or having all feedback and/or reports on the current presence of van1. 

Considering van2: 

The axioms equally hold for this case depending on their departure time.   

Following from axiom TA3, it is possible for van2 known to be present at CCMD at 

8:00 to be present at another location, QIH, at a later time. 
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 Reachable(van2, CCMD, QIH, (8:00, (8:00+0:06)))   

   8:00 < 8:06   (Present_at(van2, CCMD, 8:00)  

   Present_at(van2, QIH, 8:06)) 

If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 

 Reachable(van2,CCMD,QIH,(8:00,8:06))  

    Reachable(van2, QIH, CCMD, (8:00,8:06)) 

If van2 can reach QIH from CCMD at an interval (8:00, 8:06), then it means that van2 

can still be spatially qualified at different time interval so long as the interval is the 

same as the former, following axiom TA6. 

 Reachable(van2, CCMD, QIH, (8:00,8:06))  

   (t3, t4. t3 < t4  ((t4 - t3)   (8:06 - 8:00))) 

   Reachable(van2, CCMD, QIH, (t3, t4))) 

Since van2 can reach QIH from CCMD at time interval of (8:00, 8:06), again it can 

reach NH from QIH at interval (8:36, 8:37) with the additional time of 30 minutes for 

off-loading, then it means that van2 can reach NH from CCMD at interval (8:00, 8:37).  

Then TA10  holds following the transitive axiom for reachability as follows: 

 Reachable(van2, CCMD, QIH, (8:00,8:06))   

   Reachable(van2, QIH, NH, (8:36,8:37))   

    Reachable(van2, CCMD, NH, (8:00, 8:37)). 

 Reachable(van2, QIH, NH, (8:36,8:37))   

  Reachable(van2, NH, AH, (9:07, 9:09))   

   Reachable(van2, QIH, AH, (8:36, 9:09)). 

And from TA3, we have that: 

 Reachable(van2, AH, CCMD, (9.39,9:46))  

   9.46 < 10:00  (Present_at(van2, CCMD, 9:46) 

   Present_at(van2, BH, 10:00)). 
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Thus, concluding that it is possible for van2 to reach BH at 10:00a.m without actually 

knowing or having all feedback and/or reports on the current presence of van2. 

Table 5.5 summarizes the results for the transitions of the vans in case 1. 

From table 5.5, axiom TA3 will return false which depicts impossibility concluding that 

it is not possible for van2 to reach BH without actually knowing or having all feedback 

and reports of the current presence of van2. 

Case 2:  

Given that van1 has departed to R3 at 8:30a.m and also that van2 has departed to R4 at 

9:00a.m; and assuming that each van uses minimum of 30 minutes to offload the 

products at a particular hostel.  Note that there is an order for products to be delivered 

at BH in R2 on or before 10:00a.m. 

Considering van1 

Using axiom TA3, it is possible for the van known to be present at CCMD at 8:30 to be 

present at another location, TBH, at a later time. 

 Reachable(van1, CCMD, TBH, (8:30, (8:30+0:04)))   

   8:30 < 8:34   (Present_at(van1, CCMD, 8:30)  

   Present_at(van1, TBH, 8:34)) 

If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 

 Reachable(van1,CCMD,TBH,(8:30,8:34))  

    Reachable(van1, TBH, CCMD, (8:30,8:34)) 

If van1 can reach TBH from CCMD at an interval (8:30, 8:34), then it means that van1 

can still be spatially qualified at different time interval as long as the interval is the 

same as the former, following axiom TA6. 

 Reachable(van1, CCMD, TBH, (8:30, 8:34))  

   (t3, t4. t3 < t4  ((t4 - t3)  (8:34 - 8:30))) 

   Reachable(van1, CCMD, TBH, (t3, t4))) 
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Since van1 can reach TBH from CCMD at time interval of (8:30, 8:34), again it can 

reach ZH from TBH at interval (9:04, 9:05) with the additional time of 30 minutes for 

off-loading, then it means that van1 can reach ZH from CCMD at interval (8:30, 9:05).  

Then TA10  holds following the transitive axiom for reachability as follows 

 Reachable(van1, CCMD, TBH, (8:30,8:34))   

   Reachable(van1, TBH, ZH, (9:04,9:05))  

    Reachable(van1, CCMD, ZH, (8:30, 9:05)). 

 Reachable(van1, TBH, ZH, (9:04,9:05))   

  Reachable(van1, ZH, IH, (9:35, 9:36))  

   Reachable(van1, TBH, IH, (9:04, 9:36)). 

 Reachable(van1, IH, CCMD, (10.06,10:11))  

   10:11 < 10:00  (Present_at(van1, CCMD, 10:11)) 

   Present_at(van1, BH, 10:00)). 

Thus, concluding that it is not possible for van1 to reach BH at 10:00a.m as it returns 

false since 10:11 > 10:00 a.m. 

Considering van2: 

The axioms equally hold for this case.   

Using axiom TA3, it is possible for the van known to be present at CCMD at 9:00 to be 

present at another location, QIH, at a later time. 

 Reachable(van2, CCMD, QIH, (9:00, (9:00+0:06)))   

   9:00 < 9:06   (Present_at(van2, CCMD, 9:00)  

   Present_at(van2, QIH, 9:06)) 

If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 

 Reachable(van2,CCMD,QIH,(9:00,9:06))  

    Reachable(van2, QIH, CCMD, (9:00,9:06)) 



UNIV
ERSITY

 O
F I

BADAN LI
BRARY 

121 

 

If van2 can reach QIH from CCMD at an interval (9:00, 9:06), then it means that van2 

can still be spatially qualified at different time interval as long as the interval is the 

same as the former, following axiom TA6. 

 Reachable(van2, CCMD, QIH, (9:00,9:06))  

   (t3, t4. t3 < t4  ((t4 - t3)  (9:06 - 9:00))) 

   Reachable(van2, CCMD, QIH, (t3, t4))) 

Since van2 can reach QIH from CCMD at time interval of (9:00, 9:06), again it can 

reach NH from QIH at interval (9:36, 9:37) with the additional time of 30 minutes for 

off-loading, then it means that van2 can reach NH from CCMD at interval (9:00, 9:37).  

Then TA10  holds following the transitive axiom for reachability as follows 

 Reachable(van2, CCMD, QIH, (9:00,9:06))   

   Reachable(van2, QIH, NH, (9:36,9:37))   

    Reachable(van2, CCMD, NH, (9:00, 9:37)). 

 Reachable(van2, QIH, NH, (9:36,9:37))   

  Reachable(van2, NH, AH, (10:07, 10:09))   

   Reachable(van2, QIH, AH, (9:36, 10:09)). 

From TA3, we have 

 Reachable(van2, AH, CCMD, (10.39,10:46))  

   10.46 < 10:00  (Present_at(van2, CCMD, 10:46) 

   Present_at(van2, BH, 10:00)). 

Thus, concluding that it is not possible for van2 to reach BH at 10:00a.m.  

Also applying axiom TA1, models of the truth of the presence of the vans at CCMD at 

certain times can be stated as shown in table 5.6. 

From table 5.6, axiom TA3 will return false for both van1 and van2 since neither 

10:11<10:00 nor 10:46<10:00 holds.  This concludes that it is not possible for both 

van1 and van2 to reach BH at 10:00a.m.  Therefore, this does not imply the possibility 

of presence. 
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Table 5.5: Availability time for Van1 and Van2 on routes R1 and R4 respectively 

Van Route Departure Arrival Departure Arrival Departure Arrival Departure Arrival 

Van1 R1 
CCMD MH MH TrH TrH TdH TdH CCMD 

7:30 7:33 8:03 8:04 8:34 8:35 9:05 9:08 

Van2 R4 
CCMD QIH QIH NH NH AH AH CCMD 

8:00 8:06 8:36 8:37 9:09 9:09 9:39 9:46 

 

 

Table 5.6: Availability time for Van1 and Van2 on routes R3 and R4 respectively 

Van Route Departure Arrival Departure Arrival Departure Arrival Departure Arrival 

Van1 R3 
CCMD TBH TBH ZH ZH IH IH CCMD 

8:30 8:34 9:04 9:05 9:35 9:36 10:06 10:11 

Van2 R4 
CCMD QIH QIH NH NH AH AH CCMD 

9:00 9:06 9:36 9:37 10:07 10:09 10:39 10:46 
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Case 3:  

Given that van1 departed from CCMD to R4 at 8:30 a.m and also that van2 has 

departed to R2 at 8:00a.m; and again assuming the maximum offloading time of 30 

minutes for the products at any of the hostels. Note that an order for products to be 

delivered to BH in R2 is actually on van2‟s assigned route.  The notification for the 

order came in by 8:00a.m. 

Considering van1 

Using axiom TA3, it is possible for van1 known to be present at CCMD at 8:30 to be 

present at another location, QIH, at a later time. 

 Reachable(van1, CCMD, QIH, (8:30, (8:30+0:06)))   

   8:30 < 8:36   (Present_at(van1, CCMD, 8:30)  

   Present_at(van1, QIH, 8:36)) 

If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 

 Reachable(van1,CCMD,QIH,(8:30,8:36))  

    Reachable(van1, QIH, CCMD, (8:30,8:36)) 

If van1 can reach QIH from CCMD at an interval (8:30, 8:36), then it means that van1 

can still be spatially qualified at different time interval so long as the interval is the 

same as the former, following axiom TA6. 

 Reachable(van1, CCMD, QIH, (8:30, 8:36))  

  (t3, t4. t3 < t4  ((t4 - t3)   (8:36 - 8:30))) 

   Reachable(van1, CCMD, QIH, (t3, t4))) 

Since van1 can reach QIH from CCMD at time interval of (8:30, 8:36), again it can 

reach NH from QIH at interval (9:06, 9:07) with the additional time of 30 minutes for 

off-loading, then it means that van1 can reach NH from CCMD at interval (8:30, 9:07).  

Then TA10 holds following the transitive axiom for reachability as follows 
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 Reachable(van1, CCMD, QIH, (8:30,8:36))   

   Reachable(van1, QIH, NH, (9:06,9:07))  

    Reachable(van1, CCMD, NH, (8:30, 9:07)). 

 Reachable(van1, QIH, NH, (9:06,9:07))   

  Reachable(van1, NH, AH, (9:37, 9:39))  

   Reachable(van1, QIH, AH, (9:06, 9:39)). 

Again, from TA3, we have 

 Reachable(van1, AH, CCMD, (10.09,10:16))  

   10.16 < 10:00  (Present_at(van1, CCMD, 10:16) 

   Present_at(van1, BH, 10:00)). 

Thus, concluding that it is not possible for van1 to reach BH at 10:00a.m.  

Considering van2 

Using axiom TA3, it is possible for the van known to be present at CCMD at 8:00 to be 

present at another location, QEH, at a later time. 

 Reachable(van2, CCMD, QEH, (8:00, (8:00+0:04)))   

   8:00 < 8:04  (Present_at(van2, CCMD, 8:00)  

   Present_at(van2, QEH, 8:04)) 

If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 

 Reachable(van2,CCMD,QEH,(8:00,8:04))  

    Reachable(van2, QEH, CCMD, (8:00,8:04)) 

If van2 can reach QEH from CCMD at an interval (8:00, 8:04), then it means that van2 

can still be spatially qualified at different time interval as long as the interval is the 

same as the former, following axiom TA6. 

 Reachable(van2, CCMD, QEH, (8:00, 8:04))  

   (t3, t4. t3 < t4  ((t4 - t3)   (8:04 - 8:00))) 

   Reachable(van2, CCMD, QEH, (t3, t4))) 
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Since van2 can reach QEH from CCMD at time interval of (8:00, 8:04), again it can 

reach KH from QEH at interval (8:34, 8:35) with the additional time of 30 minutes for 

off-loading, then it means that van2 can reach KH from CCMD at interval (8:00, 8:35).  

Then TA10 holds following the transitive axiom for reachability as follows 

 Reachable(van2, CCMD, QEH, (8:00,8:04))   

   Reachable(van2, QEH, KH, (8:34,8:35))  

    Reachable(van2, CCMD, KH, (8:00, 8:35)). 

 Reachable(van2, QEH, KH, (8:34,8:35))   

  Reachable(van2, KH, BH, (9:05, 9:06))  

   Reachable(van2, QEH, BH, (8:34, 9:06)). 

Also, from TA3, we have 

 Reachable(van2, BH, CCMD, (9.36,9:40))  

   9.40 < 10:00  (Present_at(van2, CCMD, 9:40) 

   Present_at(van2, BH, 10:00)). 

Thus, concluding that it is possible for van2 to reach BH at 10:00a.m.  

Also, applying axiom TA1, models of the truth of the presence of the vans at CCMD at 

certain times can be stated as shown in table 5.7. 

From table 5.7, the axioms will lead to a false conclusion for van1 since 10:16<10:00 

is not true but returns true for van2 since 9:40<10:00, thereby concluding that it is 

possible for van 2 to deliver the products at BH on or before 10:00 a.m. 

To show that the model is scalable, cases where the company decides to increase the 

numbers of vans to three are also considered.  The axioms in the model were also used 

with the given distances and times of the known locations.  The possible combinations 

of the vans‟ routing were streamlined to four: (R1, R2, R3), (R1, R2, R4), (R1, R3, R4) 

and (R2, R3, R4) for van1, van2, and van3.  Two of these combinations, (R1, R2, R3) 

and (R2, R3, R4), were randomly selected as case studies 4 and 5 respectively. 
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Case 4:  

Given that van1 has departed to R1 at 7:30 a.m, van2 to R2 at 8:30 a.m and van3 to R3 

at 8:00a.m; still assuming the maximum offloading time of 30 minutes for the products 

at the hostels. Note that an order for products to be delivered to BH in R2 is actually 

on van2‟s assigned route.  The notification for the order came in by 8:00a.m. 

Considering van1 

Using axiom TA3, it is possible for the van known to be present at CCMD at 7:30 to be 

present at another location, MH, at a later time. 

 Reachable(van1, CCMD, MH, (7:30, (7:30+0:03)))   

   7:30 < 7:33   (Present_at(van1, CCMD, 7:30)  

   Present_at(van1, MH, 7:33)) 

If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 

 Reachable(van1,CCMD,MH,(7:30,7:33))  

    Reachable(van1, MH, CCMD, (7:30,7:33)) 

If van1 can reach MH from CCMD at an interval (7:30, 7:33), then it means that van1 

can still be spatially qualified at different time interval as long as the interval is the 

same as the former, following axiom TA6. 

 Reachable(van1, CCMD, MH, (7:30, 7:33))  

   (t3, t4. t3 < t4  ((t4 - t3)   (7:33 - 7:30))) 

   Reachable(van1, CCMD, MH, (t3, t4))) 

Since van1 can reach MH from CCMD at time interval of (7:30, 7:33), again it can 

reach TrH from MH at interval (8:03, 8:04) with the additional time of 30 minutes for 

off-loading, then it means that van1 can reach TrH from CCMD at interval (7:30, 

8:04).  Then TA10 holds following the transitive axiom for reachability as follows. 
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 Reachable(van1, CCMD, MH, (7:30,7:33))   

   Reachable(van1, MH, TrH, (8:03,8:04))  

    Reachable(van1, CCMD, KH, (7:30, 8:04)). 

 Reachable(van1, MH, TrH, (8:03,8:04))   

  Reachable(van1, TrH, TdH, (8:34, 8:35))  

   Reachable(van1, MH, TdH, (8:03, 8:35)). 

Also, from TA3, we have 

 Reachable(van1, TdH, CCMD, (9.05,9:08))  

   9.08 < 10:00  (Present_at(van1, CCMD, 9:08)) 

   Present_at(van1, BH, 10:00)). 

Thus, concluding that it is possible for van1 to reach BH at 10:00a.m.  

Considering van2 

Using axiom TA3, it is possible for the van2 known to be present at CCMD at 8:30 to 

be present at another location, QEH, at a later time. 

 Reachable(van2, CCMD, QEH, (8:30, (8:30+0:04)))   

   8:30 < 8:34  (Present_at(van2, CCMD, 8:30)  

   Present_at(van2, QEH, 8:34)) 

If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 

 Reachable(van2,CCMD,QEH,(8:30,8:34))  

    Reachable(van2, QEH, CCMD, (8:30,8:34)) 

If van2 can reach QEH from CCMD at an interval (8:30, 8:34), then it means that van2 

can still be spatially qualified at different time interval as long as the interval is the 

same as the former, following axiom TA6. 
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 Reachable(van2, CCMD, QEH, (8:30, 8:34))  

   (t3, t4. t3 < t4  ((t4 - t3)   (8:34 - 8:30))) 

   Reachable(van2, CCMD, QEH, (t3, t4))) 

Since van2 can reach QEH from CCMD at time interval of (8:30, 8:34), again it can 

reach KH from QEH at interval (9:04, 9:05) with the additional time of 30 minutes for 

off-loading, then it means that van2 can reach KH from CCMD at interval (8:30, 9:05).  

Then TA10 holds following the transitive axiom for reachability as follows 

 Reachable(van2, CCMD, QEH, (8:30,8:34))   

   Reachable(van2, QEH, KH, (9:04,9:05))  

    Reachable(van2, CCMD, KH, (8:30, 9:05)). 

 Reachable(van2, QEH, KH, (9:04,9:05))   

  Reachable(van2, KH, BH, (9:35, 9:36))  

   Reachable(van2, QEH, BH, (8:34, 9:36)). 

Again, from TA3, we have 

 Reachable(van2, BH, CCMD, (10.06,10:10))  

   10.10 < 10:00  (Present_at(van2, CCMD, 10:10) 

   Present_at(van2, BH, 10:00)). 

Thus, concluding that it is possible for van2 to reach BH at 9:36 since BH is in its 

route.  This does not require waiting for van2 to return to CCMD at 10:10.  

Considering van3 

Using axiom TA3, it is possible for vans known to be present at CCMD at 8:00 to be 

present at another location, TBH, at a later time. 

 Reachable(van3, CCMD, TBH, (8:00, (8:00+0:04)))   

   8:00 < 8:04   (Present_at(van3, CCMD, 8:00)  

   Present_at(van3, TBH, 8:04)) 
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If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 

 Reachable(van3,CCMD,TBH,(8:00,8:04))  

    Reachable(van3, TBH, CCMD, (8:00,8:04)) 

If van3 can reach TBH from CCMD at an interval (8:00, 8:04), then it means that van3 

can still be spatially qualified at different time interval as long as the interval is the 

same as the former, following axiom TA6. 

 Reachable(van3, CCMD, TBH, (8:00, 8:04))  

   (t3, t4. t3 < t4  ((t4 - t3)   (8:04 - 8:00))) 

   Reachable(van3, CCMD, TBH, (t3, t4))) 

Since van3 can reach TBH from CCMD at time interval of (8:00, 8:04), again it can 

reach ZH from TBH at interval (8:34, 8:35) with the additional time of 30 minutes for 

off-loading, then it means that van3 can reach ZH from CCMD at interval (8:00, 8:35).  

Then TA10 holds following the transitive axiom for reachability as follows 

 Reachable(van3, CCMD, TBH, (8:00,8:04))   

   Reachable(van3, TBH, ZH, (8:34,8:35))  

    Reachable(van3, CCMD, ZH, (8:00, 8:35)). 

 Reachable(van3, TBH, ZH, (8:34,8:35))   

  Reachable(van3, ZH, IH, (9:05, 9:06)) 

   Reachable(van3, TBH, IH, (8:34, 9:06)). 

Also, from TA3, we have 

 Reachable(van3, IH, CCMD, (9.36,9:41))  

   9:41 < 10:00  (Present_at(van3, CCMD, 9:41)) 

   Present_at(van3, BH, 10:00)). 
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Table 5.7: Availability time for Van1 and Van2 on routes R4 and R2 respectively 

Van Route Departure Arrival Departure Arrival Departure Arrival Departure Arrival 

Van1 R4 
CCMD QIH QIH NH NH AH AH CCMD 

8:30 8:36 9:06 9:07 9:37 9:39 10:09 10:16 

Van2 R2 
CCMD QEH QEH KH KH BH BH CCMD 

8:00 8:04 8:34 8:35 9:05 9:06 9:36 9:40 

 

 

Table 5.8: Availability time for Van1, Van2 and Van3 on routes R1, R2 and R3 

respectively 

Van Route Departure Arrival Departure Arrival Departure Arrival Departure Arrival 

Van1 R1 
CCMD MH MH TrH TrH TdH TdH CCMD 

7:30 7:33 8:03 8:04 8:34 8:35 9:05 9:08 

Van2 R2 
CCMD QEH QEH KH KH BH BH CCMD 

8:30 8:34 9:04 9:05 9:35 9:36 10:06 10:10 

Van3 R3 
CCMD TBH TBH ZH ZH IH IH CCMD 

8:00 8:04 8:34 8:35 9:05 9:06 9:36 9:41 
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Thus, concluding that it is possible for van3 to reach BH at 10:00a.m. since it will 

reach CCMD at 9:41a.m.  

Also, applying axiom TA1, models of the truth of the presence of the vans at CCMD at 

certain times can be stated as shown in table 5.8. 

From table 5.8, the axioms conclude with truth possibilities for van1 since 9:08<10:00 

is true; van2 is actually assigned to the needed route and 9:36<10:00 which is the 

arrival time at BH; and 9:41<10:00 is true for van3.  The general conclusion is that it is 

possible for any of van1, van2 and van3 to deliver the products at BH on or before 

10:00 a.m. 

Case 5: 

Given that van1 departed to R2 at 8:30a.m, van2 to R3 at 9:00a.m and van3 to R4 at 

8:30 a.m; still assuming the maximum offloading time of 30 minutes for the products 

at the hostels. Note that an order for products to be delivered to BH in R2 is actually 

on van1‟s assigned route.  The notification for the order came in by 8:00a.m. 

Considering van1 

Using axiom TA3, it is possible for the van known to be present at CCMD at 8:30 to be 

present at another location, QEH, at a later time. 

 Reachable(van1, CCMD, QEH, (8:30, (8:30+0:04)))   

   8:30 < 8:34   (Present_at(van1, CCMD, 8:30)  

   Present_at(van1, QEH, 8:34)) 

If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 

 Reachable(van1,CCMD,QEH,(8:30,8:34))  

    Reachable(van1, QEH, CCMD, (8:30,8:34)) 

If van1 can reach QEH from CCMD at an interval (8:30, 8:34), then it means that van1 

can still be spatially qualified at different time interval as long as the interval is the 

same as the former, following axiom TA6. 
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 Reachable(van1, CCMD, QEH, (8:30, 8:34))  

   (t3, t4. t3 < t4  ((t4 - t3)   (8:34 - 8:30))) 

   Reachable(van1, CCMD, QEH, (t3, t4))) 

Since van1 can reach QEH from CCMD at time interval of (8:30, 8:34), again it can 

reach KH from QEH at interval (9:04, 9:05) with the additional time of 30 minutes for 

off-loading, then it means that van1 can reach KH from CCMD at interval (8:30, 9:05).  

Then TA10 holds following the transitive axiom for reachability as follows 

 Reachable(van1, CCMD, QEH, (8:30,8:34))   

   Reachable(van1, QEH, KH, (9:04,9:05))  

    Reachable(van1, CCMD, KH, (8:30, 9:05)). 

 Reachable(van1, QEH, KH, (9:04,9:05))   

  Reachable(van1, KH, BH, (9:35, 9:36))  

   Reachable(van1, QEH, BH, (9:04, 9:36)). 

Also, from TA3, we have 

 Reachable(van1, BH, CCMD, (10.06,10:10))  

   10.10 < 10:00  (Present_at(van1, CCMD, 10:10)) 

   Present_at(van1, BH, 10:00)). 

Thus, concluding that it is possible for van1 to reach BH at 10:00a.m since it was 

assigned to this route.  

Considering van2 

Using axiom TA3, it is possible for van2 known to be present at CCMD at 9:00 to be 

present at another location, TBH, at a later time. 

 Reachable(van2, CCMD, TBH, (9:00, (9:00+0:04)))   

   9:00 < 9:04  (Present_at(van2, CCMD, 9:00)  

   Present_at(van2, TBH, 9:04)) 

If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 
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 Reachable(van2,CCMD,TBH,(9:00,9:04))  

    Reachable(van2, TBH, CCMD, (9:00,9:04)) 

If van2 can reach TBH from CCMD at an interval (9:00, 9:04), then it means that van2 

can still be spatially qualified at different time interval as long as the interval is the 

same as the former, following axiom TA6. 

 Reachable(van2, CCMD, TBH, (9:00, 9:04))  

   (t3, t4. t3 < t4  ((t4 - t3)  (9:04 - 9:00))) 

   Reachable(van2, CCMD, TBH, (t3, t4))) 

Since van2 can reach TBH from CCMD at time interval of (9:00, 9:04), again it can 

reach ZH from TBH at interval (9:34, 9:35) with the additional time of 30 minutes for 

off-loading, then it means that van2 can reach ZH from CCMD at interval (9:00, 9:35).  

Then TA10 holds following the transitive axiom for reachability as follows 

 Reachable(van2, CCMD, TBH, (9:00,9:04))   

   Reachable(van2, TBH, ZH, (9:34,9:35))  

    Reachable(van2, CCMD, ZH, (9:00, 9:35)). 

 Reachable(van2, TBH, ZH, (9:34,9:35))   

  Reachable(van2, ZH, IH, (10:05, 10:06))  

   Reachable(van2, TBH, IH, (9:34, 10:06)). 

Again, TA3 gives 

 Reachable(van2, IH, CCMD, (10.36,10:41))  

   10.41 < 10:00  (Present_at(van2, CCMD, 10:41) 

   Present_at(van2, BH, 10:00)). 

Thus, concluding that it is not possible for van2 to reach BH at 10:00 since 10:41 < 

10:00 returns false.   

 

Considering van3 
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Using axiom TA3, it is possible for the van known to be present at CCMD at 8:30 to be 

present at another location, QIH, at a later time. 

 Reachable(van3, CCMD, QIH, (8:30, (8:30+0:06)))   

   8:30 < 8:36   (Present_at(van3, CCMD, 8:30)  

   Present_at(van3, QIH, 8:36)) 

If this holds for axiom TA3, it holds for axiom TA5 as well, that means the reverse 

(commutatively) of the reachability is possible. 

 Reachable(van3,CCMD,QIH,(8:30,8:36))  

    Reachable(van3, QIH, CCMD, (8:30,8:36)) 

 

If van3 can reach QIH from CCMD at an interval (8:30, 8:36), then it means that van3 

can still be spatially qualified at different time interval as long as the interval is the 

same as the former, following axiom TA6. 

 Reachable(van3, CCMD, QIH, (8:30, 8:36))  

   (t3, t4. t3 < t4  ((t4 - t3)  (8:36 - 8:30))) 

   Reachable(van3, CCMD, QIH, (t3, t4))) 

Since van3 can reach QIH from CCMD at time interval of (8:30, 8:36), again it can 

reach NH from QIH at interval (9:06, 9:07) with the additional time of 30 minutes for 

off-loading, then it means that van3 can reach NH from CCMD at interval (8:30, 9:07).  

Then TA10 holds following the transitive axiom for reachability as follows 

 Reachable(van3, CCMD, QIH, (8:30,8:36))   

   Reachable(van3, QIH, NH, (9:06,9:07))  

    Reachable(van3, CCMD, NH, (8:30, 9:07)). 

 Reachable(van3, QIH, NH, (9:06,9:07))   

  Reachable(van3, NH, AH, (9:37, 9:39))  

   Reachable(van3, QIH, AH, (9:06, 9:39)). 

Again, from TA3, we have 
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 Reachable(van3, AH, CCMD, (10.09,10:16))  

   10:16< 10:00  (Present_at(van3, CCMD, 10:16)) 

   Present_at(van3, BH, 10:00)). 

Thus, concluding that it is not possible for van3 to reach BH at 10:00a.m since 10:16 < 

10:00 returns false.  

Also, applying axiom TA1, models of the truth of the presence of the vans at CCMD at 

certain times can be summarised as shown in table 5.9. 

From table 5.9, the axioms conclude with truth possibilities for van1 since 

10:10<10:00 is true since the van is actually on its route and 9:36 the arrival time at 

BH; but false for van2 and van3 since 10:41<10:00 and 10:16<10:00 respectively does 

not hold.  The general conclusion is that it is possible for van1 to deliver the products 

at BH on or before 10:00 a.m. but impossible for van2 and van3. 

5.5 Results from the spatial reasoning process 

The resulting availability times of the two vans in each of the three cases are as shown 

in table 5.10. 

The chart in figure 5.6 gives the resulting availability time of the vans for cases 1, 2 

and 3 showing their possibility or otherwise of meeting the deadline at 10:00a.m.  As 

shown in figure 5.6, the thick black line depicts the deadline of 10:00a.m.  It is 

possible for van1 at 9:11a.m in case study 1 to meet the deadline at 10:00a.m while 

impossible for van2 at 10:23a.m.  In case study 3, it is not possible for van1 to deliver 

on or before 10:00a.m while van2 can reach BH at 9:39a.m.  Both vans cannot meet 

the deadline of 10:00a.m for case study 2, therefore, impossible to deliver the products.  

Figure 5.7 shows the resulting availability time of the vans in cases 4 and 5 and their 

possibility or otherwise of meeting the deadline of 10:00 a.m.  

 

 

 

 



UNIV
ERSITY

 O
F I

BADAN LI
BRARY 

136 

 

Table 5.9: Availability time for Van1, Van2 and Van3 on routes R2, R3 and R4 

respectively 

Van Route Departure Arrival Departure Arrival Departure Arrival Departure Arrival 

Van1 R2 
CCMD QEH QEH KH KH BH BH CCMD 

8:30 8:34 9:04 9:05 9:35 9:36 10:06 10:10 

Van2 R3 
CCMD TBH TBH ZH ZH IH IH CCMD 

9:00 9:04 9:34 9:35 10:05 10:06 10:36 10:41 

Van3 R4 
CCMD QIH QIH NH NH AH AH CCMD 

8:30 8:36 9:06 9:07 9:37 9:39 10:09 10:16 

 

 

 

Table 5.10: Availability Time at CCMD for three combinations of two vans on their 

designated routes 

Vans\Cases 

Availability Time 

Case 1 Case 2 Case 3 

Van1 9:11 10:16 10:24 

Van2 10:23 10:23 9:39 

 

 

 

Table 5.11: Availability Time at CCMD for three combinations of three vans on their 

designated routes 

Vans\Cases 

Availability Time 

Case 4 Case 5 

Van1 9:08 10:10 

Van2 10:10 10:41 

Van3 9:45 10:16 
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10:00 a.m. 

Figure 5.7: Chart showing possibility levels in case studies with 

deadline of 10:00 a.m. using 3 vans 

Figure 5.6: Chart showing possibility levels in case studies with deadline of 

10:00 a.m. using 2 vans 
 

10:00 a.m. 
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As shown in figure 5.7, the thick black line depicts the deadline of 10:00a.m.  It is 

possible for van1 and van3 at 9:08a.m and 9:45a.m respectively in case study 4 to meet 

the deadline at 10:00a.m.  It is also possible for van2 at 9:36a.m to reach BH since BH 

is its routes before crossing the thick black line. In case study 5, it is not possible for 

van1, van2 and van3 by 10:10a.m, 10:41a.m and 10:16a.m respectively to deliver on or 

before 10:00a.m.  

The results presented in figures 5.6 and 5.7 show the cases against the availability time 

of the vans, where the availability time is the point in time when the vans will be 

available for any other distribution process. Following the initial plan, any planner 

viewing the resulting charts can easily tell when it is possible for any of the vans to 

make the next delivery from those with availability time below the thick horizontal line 

marking the deadline of 10:00 a.m. Where there is no van available, it may call for re-

planning to meet the deadline. In addition to this, figure 5.5 also show that as the 

number of vans increases, the likelihood of the possibility of the van reaching the 

desired location also increases since a van is likely to be assigned to that route. 

From the results, the possibility and/or impossibility of a certain van at CCMD at a 

certain time to make delivery ay BH by 10:00 a.m can be inferred.  For example, 

Case 1: It is possible for van1 at CCMD by 9:11 a.m. to make delivery at 

BH by 10:00 a.m. 

 It is not possible for van2 at CCMD by 10:23 a.m. to make delivery 

at BH by 10:00 a.m 

Case 2: It is not possible for both van1 and van2 to CCMD by 10:16 a.m. 

and 10:23 a.m. respectively to make delivery at BH of R2 by 10:00 

a.m. 

Case 3: It is possible for van2 at CCMD by 9:39 a.m. to make delivery at 

BH by 10:00 a.m.  More so, van2 is assigned to R2 where we have 

BH.  

 It is not possible for van1 at CCMD by 10:24 a.m. to make delivery 

at BH by 10:00 a.m. 
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Case 4: It is possible for van1 at CCMD by 9:08 a.m. to make delivery at 

BH by 10:00 a.m. 

 It is also possible for van2 at CCMD by 10:10 a.m. to make 

delivery at BH by 10:00 a.m. since van2 is assigned to R2 where 

BH situates. 

 It is possible for van3 at CCMD by 9:45 a.m. to make delivery at 

BH by 10:00 a.m. 

Case 5: It is possible for van1 at CCMD by 10:10 a.m. to make delivery at 

BH by 10:00 a.m. since BH is along its designated route. 

 It is not possible for both van2 and van3 at CCMD at 10:41 a.m. 

and 10:16 a.m. respectively to make delivery at BH at 10:00 a.m. 

Based on the prior spatial and temporal knowledge of the vans on each of the routes, 

the vans spatial presence at a location at a future time can be deductively inferred from 

the following constraints depending on its assigned route. 

1. x, t1, t2.  Reachable (x, CCMD, MH, (t1, t2)  t2 – t1 >= 2:34 

2. x, t1, t2.  Reachable (x, MH, TrH, (t1, t2)  t2 – t1 >= 0:18 

3. x, t1, t2.  Reachable (x, TrH, TdH, (t1, t2)  t2 – t1 >= 0:42 

4. x, t1, t2.  Reachable (x, TdH, CCMD, (t1, t2)  t2 – t1 >= 2.40 

5. x, t1, t2.  Reachable (x, CCMD, QEH, (t1, t2)  t2 – t1 >= 3:24 

6. x, t1, t2.  Reachable (x, QEH, KH, (t1, t2)  t2 – t1 >= 0:84 

7. x, t1, t2.  Reachable (x, KH, BH, (t1, t2)  t2 – t1 >= 0:54 

8. x, t1, t2.  Reachable (x, CCMD, TBH, (t1, t2)  t2 – t1 >= 3:42 

9. x, t1, t2.  Reachable (x, TBH, ZH, (t1, t2)  t2 – t1 >= 0:54 

10. x, t1, t2.  Reachable (x, ZH, IH, (t1, t2)  t2 – t1 >= 0:66 

11. x, t1, t2.  Reachable (x, IH, CCMD, (t1, t2)  t2 – t1 >= 4:62 

Examples of the spatiotemporal knowledge required for inferring the possibility of 

agent‟s spatial presence at a future location (BH) and time (10:00) are presented using 

the two model predicates: Reachable and Present_at as follows: 
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1a. Reachable (van1, CCMD, QEH, (9:11, 9:15)) 

 Reachable (van1, QEH, KH, (9:15, 9:16)) 

 Reachable (van1, KH, BH, (9:16, 9:17)) 

 Present_at (van1, CCMD, 9:11) 

 Present_at (van1, QEH, 9:15) 

 Present_at (van1, KH, 9:16) 

 Present_at (van1, BH, 9:17) 

 Then, it is possible. 

3a. Reachable (van2, CCMD, QEH, (9:39, 9:43)) 

 Reachable (van2, QEH, KH, (9:43, 9:44)) 

 Reachable (van2, KH, BH, (9:44, 9:45)) 

 Present_at (van2, CCMD, 9:39) 

 Present_at (van2, QEH, 9:43) 

 Present_at (van2, KH, 9:44) 

 Present_at (van2, BH, 9:45) 

 Then, it is possible. 

4a. Reachable (van1, CCMD, QEH, (9:08, 9:11)) 

 Reachable (van1, QEH, KH, (9:11, 9:12)) 

 Reachable (van1, KH, BH, (9:12, 9:13)) 

 Present_at (van1, CCMD, 9:08) 

 Present_at (van1, QEH, 9:11) 

 Present_at (van1, KH, 9:12) 

 Present_at (van1, BH, 9:13) 

 Then, it is possible. 

4c. Reachable (van3, CCMD, QEH, (9:45, 9:49)) 

 Reachable (van3, QEH, KH, (9:49, 9:50)) 

 Reachable (van3, KH, BH, (9:50, 9:51)) 

 Present_at (van3, CCMD, 9:45) 

 Present_at (van3, QEH, 9:49) 

 Present_at (van3, KH, 9:50) 

 Present_at (van3, BH, 9:51) 

 It is possible 
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5. Reachable (van1, CCMD, QEH, (8:30, 8:34)) 

 Reachable (van1, QEH, KH, (8:34, 9:05)) 

 Reachable (van1, KH, BH, (9:05, 9:36)) 

 Present_at (van1, CCMD, 8:30) 

 Present_at (van1, QEH, 8:34) 

 Present_at (van1, KH, 9:05) 

 Present_at (van1, BH, 9:36) 

 It is possible. 

In the planning system considered in the case studies, the following facts are well 

established using the axioms forming the logical theory.  The facts include: 

a. Presence of van at location and at a certain time 

b. Reachability of locations concerned within certain time durations 

c. Possibility of the vans reaching the desired locations at said time stamps. 

The axioms in the logic of spatial qualification are used to infer reachability of two 

locations. The application of the SQM to the planning of a distribution process has 

shown how it is useful in assessing any existing plan and re-plan when necessary to 

meet deadlines.  These results also show that the effectiveness of any good plan also 

depends on the available resources.   
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CHAPTER SIX 

SUMMARY, CONCLUSION AND RECOMMENDATION 

6.1 Summary 

The research described in this thesis has introduced spatial qualification problem, an 

aspect of spatial reasoning, to be concerned with the impossibility of knowing an 

agent‟s presence at a specific location and time. The logic of spatial qualification has 

been formalised using the qualitative reasoning approach.  The ability to reason with 

incomplete knowledge or reduced data set makes qualitative reasoning approach most 

suitable for spatial reasoning. Qualitative reasoning does not mean the absence of 

numbers, rather combining reduced sets of numbers with comparative approach to 

make new inferences.  Therefore, qualitative reasoning works as a complement with 

quantitative reasoning making computation of commonsense properties a reality.  

Thus, qualitative reasoning with the formalised logical theory is based on prior 

knowledge. 

The formal model resulting from the formalisation is known as the spatial qualification 

model (SQM).  The model has established that we can still reason to determine the 

possibility of an agent‟s presence at a certain location and time with location 

antecedents.  This is a missing precondition that has established an agent‟s spatial and 

temporal presence prior its participation in an action.  

In a bid to formalise the logical model in this work, the quantified (first-order) modal 

logic commonly used to represent sentences in natural language processing has been 

found suitable for representing the knowledge of the domain.  This representation, 

although it uses some quantities, is qualitative in our quest to avoid complex 

mathematical models, such as, those used in probabilistic models and fuzzy logic. 
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The field of qualitative spatial reasoning has led to the emergence of a number of 

spatial calculi addressing the regional connections. The region connection calculi 

(RCC-8), being one of these calculi, have been found suitable in the definition of some 

of the spatial relations used in our formalism.  The determination of an agent‟s spatial 

presence at a future time known to be uncertain is conveniently represented using the 

standard modal operators: necessarily  and possibly .  This permitted us to define the 

Reachable relation which would be used in determining the possibility of an agent to 

be present at a known spatial location at a certain time.  The definition of the 

Reachable relation is based on an uncertain presence of an agent at a certain time thus 

represented with the Present_at relation with a modality: Present_at(x,l,t). 

Modal logic has proven to be the sure way to logically represent that an agent is 

possibly present at a location and time. To give our logical model the required 

expressiveness, the first-order was combined with modal logic to benefit from the 

quantifiers and its expressive nature.  The hybridization of the two representational 

languages gave rise to the Quantified Modal Logic which was adopted in the 

formalism. 

The semantics of the SQM was described using the Kripke‟s Possible World semantics 

due to accessibility relation which helps us to determine the reachability of two 

locations from each other.  A comparative study of the properties of the formalised 

model with that of the standard modal system such as S4, S5 systems and Barcan‟s 

axiom was carried out. A further proof of the SQM was done using the analytic tableau 

proof method, where the possibility of an agent‟s spatial presence at a certain time is 

said to be semi-decidable. 

The notions of persistence, discretisation and commutative distance coverage were 

used as parameters in formalising the concept of spatial qualification.  Resulting from 

the formalisation process is the body of axioms called spatial qualification model with 

the presence log and reachability of locations as determinants for an agent‟s spatial 

presence.  Properties of SQM as shown in axioms KP1, KP2, 4P and TP were 

equivalent to axioms K, P, 4 and T that make up an S4 system of axiom.  Further 

comparison with the S5 system which has axioms K, P, 4, T and B shows a variance as 
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SQM failed to satisfy the property of axiom B:   .  Since domains remains 

constant across possible worlds in SQM, Barcan‟s axiom holds. 

A proof system for reasoning with the formalised theory was developed using 

analytical tableau method. The tableau proofs for axioms that make up the SQM 

demonstrates the semi-decidability as they only led to closure when it is in the 

affirmative but their negation do not necessarily lead to closure. 

The theory was applied to an agent‟s local distribution planning task with set deadline. 

Cases with known departure time and routes, which may result in the possibility or 

impossibility of an agent‟s spatial presence, were considered.  Cases showing the use 

of SQM to assessed and reason about plans in planning domain resulted in our ability 

to make inferences such as “it is possible” or “it is not possible” as the case may be for 

a certain van: van1 or van2 or van3 to make the products delivery at a certain location 

at a certain time with prior knowledge of the van‟s past location and time.   

Depending on the route, the application of SQM to the product distribution planning 

domain resulted in agent‟s feasible availability times, within or outside the set deadline 

to assess the agent‟s spatial qualification in agreement with possible cases in the 

planning task. 

6.2 Conclusion 

The spatial qualification model has qualitatively formalised the logic (reasoner) to 

assess and reason with the spatial qualification problem without resorting to any 

complex mathematical model.  The formalised model would be useful in reasoning 

with agent‟s spatial presence in planning domains or other domains where alibi 

reasoning may be required.  A typical instance is seen as the planning of processes 

with deadline was actually assessed by considering the presence of the distribution van 

at a location that is reachable from the location where supply is to be made. 

The formalism gives rise to a body of axioms named Spatial Qualification Model 

(SQM) with the presence log and reachability of locations as determinants for agent‟s 

spatial presence. The SQM therefore demonstrated the characteristics of an S4 system 

of axioms but fell short of being an S5 system. Barcan‟s axiom held, confirming 
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constant domain across possible worlds in the formalised model. Explicating the 

axioms in the SQM using PWS enabled the understanding of tableau proof rules.  

Through closed tableaux, the SQM was demonstrably semi-decidable in the sense that 

the possibility of an agent‟s presence at a certain location and time was only provable 

in the affirmative, while its negation was not.  

Depending on the route, the application of SQM to the product distribution planning 

domain resulted in agent‟s feasible availability times, within or outside the set deadline 

to assess the agent‟s spatial qualification in agreement with possible cases in the 

planning task. 

The model successfully determines the possibility or impossibility of an agent‟s spatial 

and temporal presence, making it suitable to assess plans of product distribution task 

from one location to the other for vans‟ availability or its spatial qualification. 

6.3 Contribution of the study to Knowledge 

This work introduces spatial qualification as an important precondition to reasoning 

about spatial actions.  This qualification will help the manager to assess existing plan 

and re-plan when it is necessary in order to attain the project‟s goal. 

Through this research, the spatial qualification model which demonstrates the ability of 

using qualitative reasoning in constructing useful spatial calculi or logic of presence 

required to solve any spatial qualification problem was established. This advances the 

works done in the qualitative spatial reasoning field. 

This introduces the modalities of modal logics into spatial reasoning field through its 

combination with first-order logics to have quantified modal logic used in solving the 

spatial qualification problem.  This demonstrates the ability to represent and reason 

with uncertain and incomplete spatial knowledge with the introduction of the 

modalities of modal logic to first-order language.  Its significance is seen in the 

application domain employed in the main thesis where planned actions are qualified 

with the necessarily or possibly modalities.   
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6.4 Recommendations for further studies 

One possible extension of the current work is towards collaborative spatial 

qualification reasoning, where the reasoner depends on other agents to determine its 

conclusion. 

We also look forward to the full automation and applicability of spatial qualification 

model in varying domains other than planning such as alibi reasoning and homeland 

security. 

Another aspect of furtherance of this work is on the use of evolutionary computing 

approaches to solve the spatial qualification problem and comparing the results with 

that of SQM. 
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