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Abstract

Large area estimation has been mostly accomplished using Geoadditive

Models (GM) which combines the ideas of Geostatistics and additive models.

The GM relaxes the classical assumptions of traditional parametric model by

simultaneously incorporating linear and nonlinear, nonparametric effects of

covariates, nonlinear interactions and spatial effects into a Geoadditive pre-

dictor. In the past, estimation of GM has been based on large area as a result

of insufficient information in small areas. However, Bayesian approach allows

out-of-sample information which can be used to augment the limited infor-

mation in small areas. Hence, this study adopted the Geoadditive Bayesian

model to estimate small areas with insufficient spatial information focusing

on small district areas.

The GM by Kamman and Wand was specified by using Effect Coding

(EC) to capture the spatial effect. The posterior was obtained by combining

the likelihood (data) with the prior (out-of-sample) information. The like-

lihood and the prior information were assumed to be Gaussian and inverse

gamma distribution respectively. The numerical solutions were obtained for

the posterior distribution, which were not having a closed form solution, using

Markov Chain Monte Carlo (MCMC) simulation technique. Finite difference

and partial derivative methods were used to estimate other components of

the Geoadditive Bayesian model. Kane analyser was used to collect vehicular

emission (carbondioxide, carbonmonoxide and hydrocarbon). Information

were also collected on age of vehicles, vehicle types (car and buses), vehi-

cle uses (private and commercial) from 9211 vehicles for 3 years (2008-2011)

covering 4 locations: Abeokuta, Sagamu, Ijebu-Ode and Sango-Ota. Data

were also collected on respiratory health records of 9211 individuals (18 years

and below) in six different hospitals on number of visits (nv) and diagnosis

within the locality of the collection point of pollutants. Exploratory Data
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Analysis (EDA) was carried out on emitted pollutants and age of vehicles.

Autocorrelation plot was used to determine model performance.

The Geoadditive Bayesian model was :

exp[g0(t) +
1√

2Πτ 2
e
−1
2
β2
jΣp

j=1zij +
1√

2Πτ 2
e
−1

2τ2
(βj)

2

+
1√

2Πτ 2j

e
−1

22
(βspat)2 +

1√
2Πτ 2j

e
−1

22
(βgi)

2

].exp

∫ ∞
0
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where zij,gj, βspat and βj were non-linear time varying effect, linear time vary-

ing effect, spatial effect, and random component, respectively. The MCMC

simulation technique gave the posterior means and the standard errors. This

revealed that nv, diagnosis, vehicle uses, vehicle types jointly determine the

health effect of pollutants on the individuals considered. Compared with

Abeokuta individuals who lived in Sagamu (posterior mean = 0.036) were

more likely to be affected by emitted pollutants while those in Sango-Ota

(posterior = - 0.002) and Ijebu-Ode (posterior = - 0.015) were less likely to

be affected. The EDA indicated non-linearity in the pollutants and age of

vehicles. There were convergences of parameters at 250 Lag. A significant

increase in the nonlinear effects was observed for age of vehicle (5years -

12years), Carbondioxide (10100 - 14400 ppm), Carbonmonoxide (0 - 25000

ppm) and hydrocarbon (4953 - 19812 ppm).

The derived Geoadditive Bayesian Model was found suitable and

therefore recommended for estimating location effect of small areas with lim-

ited spatial information.

Keywords: Geoadditive Bayesian Model, Autocorrelation plot, Spatial

Information.

Word Count : 467
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Chapter 1

INTRODUCTION

Vehicular emission remains a threat to environmental health, and it is

expected to increase reasonably as vehicle ownership increases in the world.

Over 600 million people globally are exposed to hazardous level of traffic -

generated pollutants (UN, 1998). Human exposure to these air pollutants

due to traffic is believed to constitute severe health problems, especially in

urban areas where pollution levels are on the increase.

Vehicular transport represents a key factor in both urban and rural develop-

ment as well as city revitalization worldwide.

In spite of the numerous benefits of motor vehicle transportation air

pollution generated by motor vehicles remains a critical challenge in rural

and urban areas. The major pollutants from traffic exhaust are particulates,

nitrogen oxides, non-methane volatile organic components (NM − V OC)

carbon monoxide, sulphur dioxides, polyaromatic hydrocarbon (PAHs) and

lead. These pollutants are regularly released into the air in many parts of

the world and, as said before, they constitute an important health hazard.

For example, in the United States in 1993 alone, transportation sources were

reported to be responsible for 7% of CO emissions, 45% of NOx, 36% of

volatile organic compounds, and 22% of particulates. In the European Union,

pollution control measures have been initiated over the past 20 years to

reduce NO2 levels, but these measures have been offset by increase in the

number of vehicles on the road. The consequences of this was that in the UK,
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for example, average concentrations of NO2 increased emissions by motor

vehicle traffic. In the developing world, automotive air pollution is a problem

mostly in large cities with regular heavy traffic congestion. Such cities include

Mexico City, Bangkok and Lagos, among others. However, even in certain

small urban centres such as Peshawar, Pakistan and Katmandu, Nepal, air

pollution from motor vehicles remains a serious threat to human health.

In addition to increased emissions by motor vehicle traffic, there are other

stationary sources of air pollution which constitute significant threat to air

quality.

All over the world, air pollution due to traffic congestion constitutes

up to 90− 95% of the ambient CO levels, 80-90% of NOx, hydrocarbon and

particulate matter, thus posing a serious threat to human health (Savile,

1993). Research conducted a decade and half ago has shown that trans-

portation sources in the USA were responsible for 77% of CO levels, 80 -

90% of NOx, 36% of volatile organic compounds and 22% of particulate

matter (USEPA, 1993). Similarly, in the UK, the average concentration of

NO2 was found to increase by 35% from 1986 to 1991 due to increase in

vehicular emission (CEC, 1992). On the global level, various scholars (e.g.

Seneca and Tausig, 1994 and Faucet and Sevingny, 1998) have all arrived at

the same conclusion that transportation is the major culprit in air pollution,

accounting for over 80% of total air pollutants.

Incomplete combustion in vehicular engines leads to the emission of

carbon monoxide and a wide range of hydrocarbons, including aromatics

and oxygenated species such as aldehydes. In addition, nitrogen oxides,

which arise from the reaction of nitrogen and oxygen at high temperature

produced in the combustion chamber, are also emitted in the exhaust gases.

The use of lead and other metal- based compounds as octane improvers is

no longer permitted in most countries. As a result, emissions of lead and

other compounds have decreased in the past few years. Emission of nitrogen

oxides is a function of fuel composition, engine type, and the power/ load

conditions on the engine type.

The strong emissions of the vehicles are caused by leaking valve shafts

and loose piston which lead to leaking of oil into the combustion chambers

of the engines. When the oil does not burn away completely it produces blue

2
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plumes, bad odour and unburnt hydrocarbons. This situation occurs most

often while a vehicle is descending a hill, which is when the engine operates

like a pump and sucks oil into the burning chamber. The impact of motor

vehicle emission extends far beyond the local area. The transportation sector

is the most rapidly growing source of greenhouse gas emissions that is, emis-

sions of chemicals that have the potential to contribute to global warming.

These include CO2, chlorofluorocarbons, NO, and CO. In 1990, about 22%

of CO2 emissions from fossil fuel use came from the transportation sector,

especially in developed countries. However, the share of emissions from de-

veloping countries is expected to rise in the future because of the growing

number of motor vehicles which use less efficient fuel-burning technologies in

these countries.

Cities embody the diversity and energy of human pursuits. Urban-

ization brings about increase in population, which lead to corresponding

increases in motor vehicles, either for private or for public transportation.

The environmental costs of motor vehicle are hard to measure and vary ac-

cording to local conditions. Also, most of the health hazards are as a result

of increased mortality due to the presence of volatile organic compounds,

NOx and SOx in the inhaled air. The rest of the hazards are due to minor

illnesses from ozone (O3), formed in the atmosphere from volatile organic

compounds and NOx.

This is a clear indication that vehicle emissions are a major source

of ambient air pollution and must be controlled if acceptable air quality is

to be assured. In addition, there are numerous health problems associated

with high concentration of these pollutants. For example, NO2 is responsible

for immune system impairment, exacerbation of asthma and chronic respi-

ratory diseases: as well as reduced lung function and cardiovascular disease

(Schwela, 2000). Particulates are dangerous and have been identified as fa-

cilitators in the development of lung cancer and increased rate of mortality

(Schwela, 2000).

The two types of vehicle emissions are exhaust emission and evapo-

rative emissions. The three major pollutants (HC, NOx, Carbonmonoxide

(CO) and carbondioxide (CO2) are exhaust pollutants. These major pollu-

tants have direct impact on human health, but the CO2 emissions do not

3
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directly impact human health. The impact of HC emission on human health

includes respiratory problems, eye irritation and potential to cause cancer.

CO emission reduces the flow of oxygen to the blood (Carboxyhemoglobin)

which is responsible for heart diseases. NOx is one of the pollutants in the

formation of Ozone and it contributes to the formation of acid rain (O2 does

not directly impact human health but is a green house gas which traps heat

on earth and causes global warming.

Policy makers all over the world have been partially successful in im-

posing policies aim at guaranteeing air quality. In the US, the ambient levels

of most pollutants have been reduced steadily since the 1960s while Europe

has lagged behind, the US in emission control on motor vehicles. Africa is

worse off in the attempt to eradicate vehicular pollutant. In Nigeria, the

government has banned the importation of vehicles that have been in use for

more than eight years. Good as this policy may be, what remains to be done

is decide how to control the emissions from the existing old vehicles plying

the streets and highways of Nigeria. Policies aim at reducing overall vehicle

use, so as to minimize congestion or pollution, must be enforced. However,

these policies really do little to reduce the twin effect of congestion and pol-

lution. The problem of congestion is specific to location and time, whereas

emissions are specific to vehicle characteristics and driving behaviour.

1.1 Background to the Study

Vehicle emission model has attracted considerable research attention and

witnessed some improvement over the years. Several models have been de-

veloped by various researchers but majority of them only looked into the

estimation of emissions from highway/ on-road vehicles while leaving out an

assessment of the effect of the emission on the people living in the area. Over

the years, research has suggested that existing mobile-source-emissions model

accuracy in estimating emissions from highway vehicles is limited; some re-

searchers have called into question the structure of existing models. A variety

of problems in the existing model has been identified by researchers during

the past five years. The most significant findings indicate that two major

contributions to on-road emissions have been largely overlooked by existing

4
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data collection and analytical methods employed.

The model development process: superemitters, or vehicles that

produce the very highest emissions rates under all operating conditions, con-

tribute disproportionately to fleet emissions and are under-represented in the

modeled vehicle fleet. High-power demand operations (hard accelerations,

moderate accelerations at high speed, high-speed activity for vehicles with

a low power-to-weight ratio, and so forth) have been identified as significant

emissions-producing activities not adequately captured by existing modeling

methods (Le Blanc et al 1994, Carlock 1992, Benson 1989, Groblicks 1990).

A single burst of or sharp acceleration may cause as much pollu-

tion as does the entire remaining trip (Carlock, 1993). These superemission

episodes are known as enrichment events because excess fuel is delivered to

the engine cylinders (thus enriching the fuel mixture). Superemitters and

superemissions must both be addressed in modelling efforts. Current mobile

emissions provide poor spatial estimates of emissions because they use re-

gional default data for various factors that affect vehicle emissions rates (e.g

fleet composition and vehicle operating modes). The aggregate default data

does not allow variation over time and space.

Some of the traffic simulation and optimization models, such as

TRANSTT-7F (Penic and Upchurch,1992), INTEGRATION (Van Aerde,1994),

FREQ (Imada and May), NETSIM (Rathi and Santiago,1989), and INTRAS

(Wicks and Liebermann,1980), have incorporated their own emission estima-

tion methods, but none of these methods was tested or validated for the

on-road driving vehicles and conditions. There are ongoing research efforts

with respect to the development of new generation of modal emission models

in the University of California at Riverside (An et al.,1997, Barth et al.,1997)

and George Institute of Technology (Bachman et al.,1997).

The development of advanced infrared remote emission sensing tech-

nology brings a cost-effective and convenient instrument for collecting on-

road vehicle exhaust emissions. Although, initially, the Remote Emission

Sensor (RES)was proven to be useful in screening for High Emitter Vehicles

(HEV) on the road (Bishop et al.,1994, Sorbe,1995, Jack et al.,1995), there

are many advantages to the use of RES in emission model evaluation and

emission model development. This is because the emission data collected by

5
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RES will naturally reflect the on-road vehicle fleet combinations and current

vehicular technologies.

Current research support the development of a modal model, which

is based on the premise that modelling emissions from specific modes of ve-

hicle operation will more accurately reflect on road emissions. Mobile source

emissions are associated with specific engine and vehicle operating modes,

each of which has a different emissions characteristic. Vehicle activity data

and emissions rate factors are required for each emission-related operating

mode, because modal activity data include a wide variety of measures and

attributes, not simply the commonly used vehicle-miles travelled; a modal

modelling regime will be much more complex than the models currently used.

The potential number of operating modes that would be necessary

to incorporate into modal modelling was perceived to be large. Also, the

availabilty of second-by-second data were inadequate for identifying causal

relationships or developing reliable modal emission-rate algorithms. Pre-

liminary research indicates that the relationships between operating modes

and emissions for any given vehicle are complex. Emissions rates for certain

models are affected by a variety of vehicles, environmental and perhaps even

driver attributes. Numerical variables must be explicitly handled in a modal

model, such as fleet composition, the incidence and types of superemitters,

network characteristics, driver behaviour, and even fuel consumption. As

complex as these factors might seem, however, new monitoring and mod-

elling capabilities have made possible the development of advanced modal

models.

The current mobile model, mobile 5a, also known as the EPA mo-

bile source emission factor model, is a computer program that estimates the

emissions of carbonmonoxide, hydrocarbon, and nitrogen oxides for eight dif-

ferent types of gasoline-fueled and diesel highway motor vehicles. The model

consists of an integrated collection of mathematical equations and assump-

tions about the emissions from vehicles manufactured from 1960 to 2020.

These are generally the cars produced in the 25 most recent model years

which are assumed to be in operation in any given calendar year. The first

mobile model was made available for use in 1978 (Abhishek, 2007); since then

major updates and improvements to the model have been made and quite a
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bit more is now known about the complexity of the factors affecting vehicle

emissions, as measurement devices have improved, and as more data have

been collected. According to the agency, the improvements have resulted

in the refinement of emissions estimates for evaporative emissions (such as

occur when the fuel tank and system heat up) for the uncorrected in-use

deterioration (wear and tear) that results from poor vehicle maintenance or

tampering and for other factors.

In its simplest form, EPA’s Mobile model allows the model user to

produce a number-an estimated quantity of emissions for the three pollutants

of concern-by multiplying the estimated emissions per mile for an average ur-

ban trip by the estimated number of trip miles travelled in an area. Over

the years, researchers have learnt that vehicle emissions are highly complex.

In order to compensate for the complexity and other emission-producing ac-

tivities, EPA has periodically adjusted its basic formula-through the use of

revised ”correction factors” to approximate vehicle exhaust emissions in a

range of situations. In essence, the correction factor is a multiplier added to

the basic formula (miles travelled times emissions rate per mile), to adjust the

model’s output to closely reflect actual emissions. For the states, the Mobile

model is a tool for constructing emissions inventories, creating control strate-

gies,producing state implementation (SIP) and-subsequently-demonstrating

control strategy effectiveness to EPA and others. For EPA, the Mobile model

is a tool for evaluating the adequacy of a state’s emissions inventory estimate,

motor vehicle control strategies, and implementation plans.

In essence, the model’s estimates provide EPA regulators with criti-

cal information that is used to evaluate the adequacy of a state’s programme

and the relative benefits of various policies to control motor vehicle emissions.

Additionally, the model’s estimate can affect state policy decision on issues

such as the content and volatility of fuels, and some decisions on highway

projects.

The Mobile model has been updated about 10 times since its introduction in

1978.

The following are limitations of Mobile 5a model:

7



UNIV
ERSITY

 O
F I

BADAN LI
BRARY

1. Emission estimates for higher speeds, especially speeds in excess of

65mph

2. Representation of emissions from rapid acceleration and deceleration

including aggressive driving behaviours

3. Representation of emissions immediately after engine start-up, known

as cold start emissions.

4. Representation of emissions from air conditioner usage.

5. Representation of emissions from road grade such as when a car climbs

a hill.

6. Representation of high emitting vehicles in the MOBILE model’s sup-

porting database.

7. Representation of emissions from lower polluting fuels, especially fuels

with lower volatility

8. Representation of emissions system deterioration for vehicles with 50,000

or more odometer miles

9. Emissions estimates and assumptions for vehicle inspection and main-

tenance (I&M) programmes.

10. Estimates and assumptions for non-tail pipe evaporative emissions when

the vehicle is not operating.

11. Emissions estimates assumptions for the inspection and maintenance

(I&M) of heavy duty vehicles-those with a gross vehicle weight of 8,501

pounds or more.

12. Data characterizing vehicle fleet.

13. Greater distinctions in roadway classifications.

14. Quantifying the uncertainty of the model’s estimates.

MOBILE model and Emfac model (used only in California) require

the average speed as the sole descriptor of a vehicle’s modal events and
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driving conditions. They are not sensitive to vehicle’s modal events, such

as acceleration/deceleration, cruise speed and idling; they cannot be used to

effectively evaluate the traffic control and management strategies that are

aimed at reducing vehicle emissions.

Also, the emission factors in MOBILE and EMFAC are derived from

the FTP driving cycles of in-laboratory emission testing. Their capabilities

in representing the vehicle emissions for the on-road driving conditions were

not extensively investigated.

Aside these limitations, a number of independent evaluation field studies on

the MOBILE models have indicated the unreliability of their results.

The need to cater for the shortfall of the Mobile model and get more

accurate vehicle emission factor model for air quality modelling as well as

the assessment of health effects, prompted the Waterloo Centre of Atmo-

spheric Sciences (WCAS)’s decision to develop a detailed micro-scale model,

MicroFac. This micro-scale model can provide accurate emissions from a ve-

hicle fleet under specified conditions of meterology, fleet composition, vehicle

age, distribution and speed. The Microfac emission model is now being cou-

pled with high resolution dispersion models to produce a tool that will give

the local concentrations of these emissions with high temporal and spatial

resolution. These high resolution local concentrations will be incorporated

into regional models in the future via a dual-kernel local-regional modelling

procedure. This system will treat the chemistry and dispersion of the pri-

mary and secondary vehicle-related pollutant with the resolution of the local

dispersion model and transfer them to the regional model when their spatial

extent is comparable to that model’s resolution. This will greatly increase the

accuracy with which their effects on regional air quality can be determined.

Another model developed is the GIS-based modeling approaches which

address the limitation of the current model. The GIS approach described

requires significant time and effort to produce the data required. Cost asso-

ciated with developing GIS-based emissions models, primarily those of model

development, standardization, and integration of new data sources, are likely

to be high. The GIS system, with integrated modeling and improved data-

handling capabilities, will yield significantly improved spatial and temporal

allocation of vehicle activity and emissions.
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The limitations of GIS based model revolve mostly around the intensity of

data required.

1.2 Statement Of the Problem

Some studies have shown that some pollutants are closely associated

with human health. One of these pollutants is carbonmonoxide, which is

one of the gases produced in the course of gas flaring. Carbonmonoxide

poisoning can be difficult to diagnose because the symptoms mimic other

illnesses. Both humans and animals exposed to gas flaring are at risk of

carbonmonoxide poisoning and this could result in chronic health disease,

anaemia or respiratory problems.

Diesel Exhaust Particles (DEPs) is another form of pollutant which

is generated by heavy duty diesel engines in various industries. It can absorb

450 different organic compounds, including mutagenic and car urogenic Poly-

cyclic Aromatic Hydrocarbon (PAH). These particles can remain unborn for

a long period of time and will be deposited in the lungs. Because DEPs are

a major component of particulate air pollution in most industrialized urban

areas their effects on pulmonary infections are of great environmental and

occupational concern. In Nigeria such effects can only be imagined. Studies

have shown that chemical exposures can affect immunity in two major ways:

by causing hypersensitivity reactions including allergy, which can be harmful

to organs and tissues; and autoimmunity, in which immune cells attack self or

by causing immunosuppression, a reduction in the responses and activities of

the immune system. With increasing concern about environmental risk, the

demand for reliable information has grown with alarming rapidity. Also, the

need to get a suitable model to look at the vehicular emission and its effect

on the populace, especially children (who are more susceptible to the health

effects of these emission due to their weak immune systems and developing

organs) has become very urgent indeed. This study will use Geoadditive

Bayesian model in looking at the effect of essential vehicular pollutants [CO,

CO2,and HC] on the health of children.
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1.2.1 Geoadditive Model and its problems

A geoadditive model uses mostly recorded observations in which there is

provision for the assessment of geographical information of the location.

Some of the limitations of geoadditive model include the inability to make use

of the spatial effect when the number of districts/Local Government Areas

considered is limited/small or when the units/districts considered are not

neighbours. Also, it gives no significant difference when the district are not

large.

For this research work, an effect coding method will be used for the

spatial effect because of the small number of the local government areas and

the fact that they are not neighbours. This makes the geoadditive model

inappropriate for estimating the spatial effect using the longitude and latitude

of the location.

1.2.2 Gap in Literature

Past studies have concentrated mostly on the use of the usual linear

regression models which, however, are not appropriate in situations where

effects of vehicular emission on the populace are to be determined.

Majority of the vehicle emission models developed by various re-

searchers have only looked into estimating emissions from vehicles, leaving

out the effect. The current mobile emissions provide poor spatial estimates

of emissions because they use regional default data for various factors that

affect vehicle emissions rates.

Another study carried out in Lagos by Ojolo et al. (2007) was based

on the survey of the effects of vehicular emissions on human health in Nige-

ria. Data was elicited through the administration of copies of a questionnaire.

Their analysis was also based on descriptive study through which the effect

cannot be determined since their conclusion was based on observational in-

formation about the locations. There are problems with their methodology,

which only considered the emission part and based the effect on observational

information. As a result, the geoadditive Bayesian model that encompasses

most of the known regression models and improved on their shortcomings

using effect coding for the spatial effect was developed.
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In the past, the use of Geoadditive model had been based on large

areas because of sufficient information which is lacking in small areas. How-

ever, the Bayesian approach allows out-of-sample information which can be

used to augment the limited information in small areas. Therefore, this study

adopted the Bayesian technique to estimate small areas with insufficient spa-

tial information, focusing on small district areas that are not neighbours.

1.2.3 Possible Research Questions

• Can Geoadditive model be used to determine the effect of vehicular

emission on children?

• Can the model be used in the absence of sufficient Spatial information?

• Can the model be applied to data on location using effect coding to

capture spatial effect?

• Can the model account for location effect?

• Will the model be able to combine the environmental effect and the

health effect?

1.3 Aim and Objectives

The main objective of this research is to establish the effect of exhaust emis-

sion on children, using the effect coding for the spatial effect. However, the

specific objectives are to:

• construct a geoadditive Bayesian model from the parent geoadditive

model.,

• estimate and determine the components of the Geoadditive Bayesian

Model.,

• apply the Geoadditive Bayesian Model to real life data on vehicular

emission in Ogun state and investigate the relationship between the

health of children and emitted pollutants
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1.4 Justification of the Study

Environmental data are frequently asymmetrical and skewed to the right,

having a long tail towards high concentrations. So the validity of classical

assumptions of fixed covariate effects in traditional linear model are too rigid

and restrictive. Consequently, there is the need for a more flexible approach

that relaxes this assumption and a possible solution. A Geoadditive Model

relaxes the classical assumptions of traditional parametric model by simulta-

neously incorporating linear and non-linear nonparametric effects of covari-

ates, nonlinear interactions and spatial effects into a Geoadditive predictor.

Also,with vehicular emission accounting for about 60% of the total emitted

pollutants (Kpako, 2003), a study such as this is imperative indeed.

This research then considers a situation where the usual rigid as-

sumption of additivity/linear model is extended to incorporate the non-linear

covariate effect and at the same time considers the spatial effect. Geoadditive

model(Kamman and Wand 2003) combine the idea of kriging and additivity

while accounting for nonlinear covariates effects. Therefore, the Geoadditive

model by Kamman and Wand was specified using effect coding to capture

the spatial effect.

1.5 Definition of Relevant Terms

MARKOV RANDOM FIELD: This is a model in which a set of random vari-

ables have a Markov property described by an undirected graph. A Markov

random field is similar to a Bayesian network in its representation of inde-

pendence. Markov random field is popular when space is split into discrete

contiguous geographic units (districts of a town, for example). In this case, a

simple smoothing penalty is constructed based on the neighbourhood struc-

ture of the geographical units.

PRIORS FOR PARAMETERS: In classical inference, the sample data y is

taken as random while population parameters θ, of dimension p, are taken

as fixed. In Bayesian analysis, parameters themselves follow a probability

distribution, knowledge about which is summarized in a prior distribution

(θ). Often, a prior amounts to a form of modelling assumption or hypoth-
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esis about the nature of parameters, e.g in random effect models. A prior

specifying the errors as spatially correlated is likely to be a working model

assumption, rather than a true cummulation of knowledge. In many situa-

tions, existing knowledge may be difficult to summarize or elicit in the form

of an informative prior and to reflect such essential prior ignorance, resort is

made to non-informative priors. Examples are flat priors, that is, a parame-

ter is uniformly distributed between −∞ and ∞. It is possible that a prior

is improper (does not integrate to 1 over its range); such priors may add

to identifiability problems (Gelfand and Sahu, 1999) and so, many studies

prefer to adopt weakly informative priors which are just proper.

POSTERIOR DENSITIES: In classical approaches such as maximum like-

lihood, inference is based on the likelihood of the data alone. In Bayesian

models, the likelihood of the observed data y given parameters θ, denoted by

f(y/θ) equivalently L(θ/y), is used to modify the prior beliefs (θ), with the

updated knowledge summarized in a posterior density, (θ/y). Thus, updated

beliefs are a function of prior knowledge and the sample evidence.

ASTHMA: Asthma is a chronic inflammatory disease of the airways which is

associated with reversible airway obstructive, hyper responsiveness to trig-

gers, clinical symptoms of wheezing, chest tightness, or cough and increased

mucous production. It is a major respiratory illness among children and

disproportionately affects minorities. Most children diagnosed with asthma

have mild to moderate symptoms; however, there are those whose symptoms

result in numerous visits to the hospital emergency room and multiple hos-

pitalizations.

Chemicals in vehicle exhaust are harmful to asthmatics. Exhaust can ad-

versely affect lung function and may promote allergic reactions as well as

airway constriction. All vehicles, especially diesel engines, emit very fine

particles that deeply penetrate lungs and inflame the circulatory system,

damaging cells and causing respiratory problems. Even short-term expo-

sure to vehicle exhaust may harm asthmatics because asthmatic children are

particularly sensitive to air pollution. New England status has some of the

highest asthma rates in United States with about 9 percent of Connecticut’s

youth having the disease. Inhalation of vehicle emissions, even for short pe-

riods, may be harmful to asthmatics. A study revealed that children are 40
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percent likely to have an attack on high outdoor pollution days.

CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD): This is also

known as chronic obstructive lung disease and encompasses two major disor-

ders; emphysema and chronic bronchitis. Emphysema is a chronic disorder

in which the walls and elasticity of the alveoli are damaged. Chronic bron-

chitis is characterized by the inflammation of the cells lining the inside of

the bronchi, which increases the risk of infection and obstructs the airflow in

and out of the lung. Smoking is responsible for approximately 80% of COPD

cases while other forms of air pollution may also influence the development

of these diseases. Symptoms include cough, production of mucous and short-

ness of breath. It is important to note that no cure exists for people suffering

from COPD although healthy lifestyle and appropriate medication can help.

Vehicle emissions are particularly harmful to people afflicted with COPD,

such as chronic bronchitis. Significant and replicated associations have been

found between increased Ozone levels and a range of adverse effects on the

lungs. Several studies have shown an increased risk of hospital admission

from COPD associated with high ozone level. There is also a relationship

between the levels of PM10 and morbidity in patients with COPD. These as-

sociations were noted in Philadelphia, in the United States, where the major

source of these particles is motor vehicles. Fine particle matter is especially

harmful to the people with COPD and has been found to increase their hos-

pital admission rates. High levels of PM10 are also associated with increased

morbidity among those with the illness.

CARDIOVASCULAR DISEASE: Mortality and hospital admissions for my-

ocardial infarction, congestive cardiac failure and cardiac arrhythmia increase

with a rise in the concentrations of particulate and gaseous pollutants. As

concentrations of airborne particles increase, those with cardiovascular dis-

ease may experience increasing severity of symptoms, rates of hospitalization

and mortality. The risk of having a heart attack is greater for people exposed

to pollution from heavy traffic, as well as for those living near air-polluted

roadways.

KRIGING: The term kriging refers to a widely used method for interpolating

or smoothing spatial data.Given a set of data yi, i=1,....,n, at spatial location

Xi,Xε<2, the simple kriging model for interpolating the underlying spatial
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surface is

yi = µ+ S(xi) + εi (1.1)

where S(x) is a zero-mean stationary stochastic process in <2 and the εi

are assumed to be independent zero-mean random variables with common

variance σ2
ε and distributed independently of S (Cressie,1993). Interpolation

at an arbitrary location X0ε<2 is done through

ŷ0 = ȳ + Ŝ(x0) (1.2)

where Ŝ(x0) is the best linear predictor of S(x0) based on the data in y.

For a known covariance structure of S, the resulting predictor is

Ŝ(x0) = CT
0 (C + σ2

εIn)(y − µI) (1.3)

where:

C ≡


S(x1)

...

S(xn)

 and C0 =


cov{S(x0), S(x1)}

...

cov{S(x0), S(xn)}


The practical implementation of (1.2) requires the definition of the co-

variance structure of S(x). The usual approach is to define a parsimonious

model for Cov{S(x),S(x+h)}, estimate the required parameters to derive the

estimates of C and ĉ0 and then substitute in (1.1) to obtain:

ŷ0 = ȳ + ĉT0 (Ĉ + σ̂2
εIn)(y − ȳI) 1.3

usually a common assumption to simplify the covariance structure of S is the

assumption of isotropy, that is

Cov{S(x), S(x+ h)}

depends only on

‖h‖ (1.4)

this is a stronger assumption than stationary, because it says that the covari-

ance is independent both of location and direction, and sometimes it could

not be a valid condition (1.4) implies that

C = [c(‖xi − xj‖)]1≤i,j≤n
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C(r) ≡ σ2
sC0(r), σ

2
s ≡ var[s(x)],

with C0=1. The functions C and C0 are respectively the covariance function

and the correlation function of the isotropic process S(x) and they should be

chosen to ensure that C is a valid covariance matrix.

1.6 Organization of the Thesis

This chapter, which is the first, has been devoted to a discussion of the

current existing model for vehicular emissions, the statement of the problem,

objectives of the study, justification for the study and definition of terms.

Chapter two deals with the literature review for environmental data, mod-

els for vehicular emission and review of geoadditive model. Chapter three

discusses the theoretical framework of the model and chapter four entails

teasing out the methodology for the research. Chapter five shows the result

of the various analyses while chapter six brings up the rear by summarizing

the geoadditive Bayesian model and the model application. It also indicates,

the contribution which the current study has made to knowledge, pointing

out areas for further research and drawing a general conclusion for the study.
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Chapter 2

REVIEW OF LITERATURE

2.1 Introduction

This chapter is divided into three sections: the first section discusses dif-

ferent models for environmental data, the second section focuses on different

models for vehicular emissions and the last section is concerned with a review

of different areas of application of geoadditive model.

2.2 Review of Models for Environmental Data

Over the past ten years, hundreds of studies have been published in

peer-reviewed literature to demonstrate the special vulnerability to air pol-

lution that exists among susceptible population with serious illnesses. Tens

of millions of Americans suffer from these illnesses, which include asthma,

chronic obstructive pulmonary disease (COPD), cardiovascular diseases and

lung cancer. Also, at special risk are children, the elderly, those with com-

promised immune systems and those with specific generic traits. During the

past decade, scientists have confirmed a relationship between the two forms of

air pollution, ozone and particulate matter, and increased rates of mortality,

especially among those with cardiovascular disease.

Bobak & Leon (1992) studied infant mortality based on a consid-

eration of the ecological situation in the Czech Republic. They found an

association between sulfur dioxide and Total Suspended Particles (TSP) on

the one hand and infant mortality on the other, after controlling a number of

potentially confounding variables (at the ecological level). The effects were

specific to respiratory mortality in the post-neonatal period. These results
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were later confirmed in a nationwide case-control study based on the Czech

national death and birth registers; this design allowed one to control for social

and biological covariates at the individual level. The study found a strong

effect of sulfur dioxide and TSP on post-neonatal mortality from respiratory

causes: the relative risks, per 50µg/m3 increase in pollutant concentration,

were 1.95 (95% CI 1.09 - 3.50) for sulfur dioxide and 1.74 (95% CI 1.01 -

2.98) for TSP.

In a similar way, Wjst et al. (1993) investigated traffic flow around

a child’s school. The traffic count method has the advantage of being likely

to be a more valid measure than distance to roads. It is worth the effort,

however, considering the daily movements of an individual. Throughout the

day, an individual travels between home and work or school, experiencing a

number of different exposure levels on the way. Recreational activities may

also subject a person to different levels of exposure. Indeed, even within the

residential area, exposure may vary depending on the time one spends indoors

or outdoors. Indoor exposure toNO2 may be high, with levels possibly higher

than outdoors if a gas stove is used in the home. Another point to consider

is the type of traffic exposure. Emissions vary greatly between cars and

trucks. Some have approached this by analyzing data from different vehicles

separately, suggesting truck pollution to be more detrimental to health than

that from cars. It could be suggested that as car and truck pollution varies,

for example, trucks produce a lot more particulate matter consisting of diesel

particles than cars, that perhaps one should consider the effects of particulate

separately from those of NO2. This, however, is not without difficulties; as

if one is exposed to traffic there will be a combined effect from a cocktail of

pollutants produced by both trucks and cars.

A number of studies have used modeling to estimate pollution expo-

sure. A model is capable of taking into account a whole range of factors that

may affect exposure. As illustrated by Pershagen et al. (1995), exposures

both at home and at day-care centres or for others at school or work can

be considered, with these being adjusted for the time spent in each location.

Factors considered in the models used in the studies have included vehicle

type and density, presence and type of buildings on a street, meteorological

conditions, street width and distance from house to the middle of the street,
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amongst other factors.

Even within a model, however, accounting for personal day-to-day ex-

posures is still problematic. In order to take previous exposures into account,

a cohort study would be necessary. Certainly, if one is trying to account for

the prevalence of a disease like asthma, knowing previous exposure levels

prior to the onset of the disease is important. To do this, one would need

to look at the previous resident and ascertain the day-to-day exposures of

that person during his/her life. An alternative approach would be to use a

personal monitoring system. Both methods of assessing long-term exposure,

however, would be very expensive. One could consider the use of monitor-

ing stations already in place throughout the cities. The problem with using

such stations is that they are generally widely dispersed while pollution lev-

els may vary substantially within short distances, e.g. exponential decline

in the concentration of certain pollutants with increasing distance from busy

roads. Installing sufficient monitoring stations to adequately capture spatial

variation in levels of pollution encountered over short distances, would be

both impractical and expensive.

Vliet et al. (1997) examined whether motor vehicle exhaust from

freeways has an effect on the respiratory health of children. A cross-sectional

study was conducted using children attending schools situated less than 1000

m from major freeways in the Province of South Holland. The selected free-

ways carried between 80,000 and 150,000 vehicles per day. Separate counts

for truck traffic indicated a range from 8000 to 17,500 trucks per day. A

total of 13 schools, from which 1498 children were drawn, were asked to

participate. From these children, 1068 usable questionnaires were obtained.

Chronic respiratory symptoms reported in the questionnaire were analyzed

with logistic regression. Distances from the freeway and (truck) traffic in-

tensity were used as exposure variables. Cough, wheeze, runny nose, and

doctor-diagnosed asthma were significantly more often reported for children

living within 100 m from the freeway. Truck traffic intensity and the con-

centration of black smoke measured in schools were found to be significantly

associated with chronic respiratory symptoms. These relationships were more

pronounced in girls than in boys.

Loomis et al. (1999) conducted a time-series study of infant mortal-
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ity in the south-western part of Mexico City from 1993 to 1995. Exposure

included nitrogen dioxide, sulfur dioxide, ozone and particulate matter with

particle size < 2.5µm(PM2.5). A 10µg/m3 increase in the mean level of fine

particles during the previous three days was associated with a 6.9% (95%,

CI 2.5− 11.3%) excess increase in infant deaths.

Buckeridge et al. (2002) worked on the effect of motor vehicle emis-

sions on the respiratory health in an urban area. They developed an exposure

model and implemented it using a geographic information system to estimate

the average daily census enumeration area (EA) exposure to PM (2.5). Hos-

pital admission diagnostic codes from 1990 to 1992 were used to measure

respiratory and genitourinary conditions. Effect of EA exposure on hospital

admissions was assessed using a Poisson mixed-effects model and the spatial

distributions of the variables. It was shown that exposure to PM (2.5) has a

significant effect on the admission rates for a subset of respiratory diagnoses

(asthma, bronchitis, chronic obstructive pulmonary disease, pneumonia, up-

per respiratory tract infection) with a relative risk of 1.24 at 95% C.I. also

a weaker effect of exposure on hospitalization for all respiratory conditions,

and no effect on hospitalization for non-respiratory conditions.

Gauderman et al. (2004), examined the effect of air pollution on the

lung development from 10-18 years, adopting a two-stage regression approach

to relate the longitudinal pulmonary-function. The first stage model was a

regression of each pulmonary-function measure on age to obtain separate,

community-specific average growth curves for girls and boys. They accounted

for the growth pattern using a linear spline model.

The second-stage model was a linear regression of the 24 sex and

community-specific estimates of the growth in lung function over an eight-

year period on the corresponding average levels of each air pollutant in each

community. Inverses of the first-stage variances were incorporated and the

model was refitted to estimate the sex-average effect of the pollutant. They

were able to show that the ozone contributes to the acute health effects and

that exposure to ambient air pollution is correlated with significant deficits

in respiratory growth over an eight-year period.

Ferguson et al. (2004) considered the increasing prevalence of asthma

and the effects of air pollution on asthma using modelled exposure approach.
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The routine surveillance system recording spatial variation in pollutants level

allows improved understanding of the link between road-traffic pollution and

asthma. This could be used to help predict future health impact, particularly

in cities and towns.

Another study carried out on Traffic-related air pollution near busy

roads using East Bay children by Kim et al (2004) revealed that there were

differences in concentrations between schools nearby and those more distant

from major roads. Using a two-stage multiple-logistic regression model, there

was an association between respiratory symptoms and traffic-related pollu-

tants. Also, there was spatial variability in traffic pollutants and associated

differences in respiratory symptoms in a region with good air quality. The

findings support the view that traffic-related pollution is associated with

respiratory symptoms in children.

Oyana and Rivers (2005) worked on geographic variations of child-

hood asthma hospitalization and outpatients visits in relation to the proxim-

ity to ambient pollution sources at a US-Canada border crossing. The effects

of ambient pollution sources on individuals with asthma was demonstrated

and they suggested that these sources are the contributing factors both in the

west and east of the study area. Identification of asthma clusters associated

with different sources may provide insights into how mixtures of pollutant

interact and lead to the development of asthma in susceptible individuals.

Jennifer and Roger (2005) developed a computer model, using Ge-

ographical Information System (GIS), to quantify potential health effects

of air pollution from a new energy waste facility on the surrounding urban

population. The method was a development based on an existing computer

spreadsheet model. The model was based on changes in ambient pollution

monitoring sites resulting from policies to improve air quality in a local au-

thority, assuming that levels changed in parallel across the whole area. The

method links the spreadsheet to a GIS, so as to be able to calculate the health

impact for modelled additional exposure experienced by resident population

of each enumeration district.

The quantification relies on the simple equation:

∆E = β ∗∆C ∗ P ∗ E (2.1)
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where ∆ E = (change in) background rate of events

β = exposure-response coefficient

∆ C = change in concentration of pollutant

P = population exposed.

The coefficients are derived from epidemiological studies, which show

a clear association between increased exposure and increased effects. The

anticipated emissions from the proposed incinerator were entered into the

ADMS air pollution dispersion model to obtain contours of additional con-

centrations for the new source.

Using the GIS it was possible to see, at a glance, the population

density variation across the study area in conjunction with the distribution

of pollutant concentrations. The results from the GIS were then exported

into MS Excel so that further calculations could be made.

The model changes in annual mean concentrations of PM10 were

small, being 0.08µg/m3 at the most affected location. The average additional

exposure over the area within 20km would be 0.002µg/m3 . Even in the

most affected location, concentration increases of this magnitude would be

impossible to detect through the use of monitoring instruments, given current

background concentrations of about 25µg/m3 and the precision of current

instruments.

Combining a GIS system, dispersion model and a spreadsheet the

feasibility of potential health impacts of sources of pollution was shown, and

the underlying assumptions were examined using sensitivity analyses.

Maynard et al. (2007) considered the Mortality Risk Associated with

short-term exposure to Traffic Particles and sulphates using Geographic In-

formation System (GIS) based exposure model. Deterministic covariates such

as traffic density and meteorology factors and a smooth function of latitude

and longitude were incorporated. They found out that both traffic particles

and particles from coal burning power plants were associated with increased

mortality in Boston metropolitan area. The traffic particle association was

more significant and larger; because Boston currently is in compliance with

the current and proposed US Environmental Protection Agency (2006) PM2.5

standard. This suggests that the current standards are not protective of pub-

lic health.
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Suglia et al. (2007), in their investigation of the association of Black

carbon with cognition among children in a prospective Birth Cohort study,

found a consistent relation between exposure to black carbon and reduced

neurocognitive functioning across a number of domains in urban community-

dwelling school-aged children.

Kandala et al. in their work entitled ”Spatial Analysis of Risk Fac-

tors for Childhood Morbidity in Nigeria” (2007), investigated the impact of

geographical factors and other important risk factors on diarrhea, cough and

fever using Geoadditive Bayesian Semiparametric models. A higher preva-

lence of childhood diarrhea, cough, and fever was observed in the northern

and eastern states, while a lower disease prevalence was observed in the west-

ern and southern states. Also, children from mothers with higher levels of

education and those from poor households had significantly lower associa-

tions with diarrhea. Statistical method:

ηi = x
′
β + w

′
γ (2.2)

with a geoadditive predictor, leading to the geoadditive regression model

ηi = f1(xi1) + ......+ fp(xip) + fspat(si) + w
′

iγ (2.3)

where f1, ..., fp are nonlinear smooth effects of the metrical covariates.

Linden et al. (2007) considered carbonmonoxide in Ouagadougou,

Burkina Faso. It is a comparison among urban background, roadside and

In-Traffic measurements where they examined the spatial variations of car-

bonmonoxide (CO) in the urban environment of Ouagadougou, Burkina Faso.

The results show significant differences between the three methods where av-

erage in-traffic values were 2-3times higher than average background values.

During traffic congestions, these differences extended up to 6 and 20 times

respectively. Results are discussed in relation to human exposure assessments

and WHO guidelines.

Osuntogun and Koku (2007) also worked on the ”Environmental Im-

pacts of Urban Road Transportation” in south-western states of Nigeria.

Their study was carried out in some locations associated with heavy traffic

-eight in Lagos metropolis and four locations each in Ibadan and Ado-Ekiti.
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Also, two locations in Lagos, one in Ibadan and one in Ado-Ekiti were se-

lected. Air quality indicators, namely carbonmonoxide (CO), sulphur diox-

ide (SO2), nitrogen dioxide (NO2) and total suspended particulates, were

estimated using automatic air monitors. The noise level at these locations

was also determined with a noise meter. The blood samples of people at

these high trafficked locations (such as commercial drivers, conductors, street

traders and road traffic wardens) were also analyzed for lead content with a

resultant high Pb concentration. Response to interviews indicate that these

people suffer more from air pollution related diseases such as headaches, loss

of vision, anaemia, forgetfulness and fatigue than those from the control

locations.

Ojolo et al. (2007) investigated the effects of vehicular emissions on

human health, vegetations and environments using three locations in Lagos

(Oshodi, Mushin and Apapa) and the fourth location (Fola Agoro) as a con-

trol.

The investigation was carried out with the use of questionnaires and labora-

tory experiments. They observed that the people living around are affected

by sleeplessness, runny nose, heavy eye, asthmatic attack and headache. The

location was used to determine the impacts of vehicular emissions on the

ecosystem.

Another study carried out by Oguntoke and Yusuff (2008) on ve-

hicular emissions and the associated human health problems in Abeokuta

metropolis revealed that there was significant variation in the volume of traf-

fic and the concentration of the sampled gases between the periods of the day

at the selected motorways. Also, there was a significant (p > 0.05) correla-

tion between traffic volume/density and CO. Hence, traffic volume accounted

for pollutant concentrations in air sampled along the selected motorways and

the health problems suffered and reported which include cough and breathing

impairment among others.

Sugha, Gryparis, Schwartz and Wright (2008) association between

traffic-related black carbon exposure and lung function among urban women

and concluded that exposure to traffic-related Black carbon, a component of

particulate matter, independently predicted lung function in urban women,

when adjusting for tobacco smoke, asthma diagnosis, and socio - economic
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status.

Abam and Unachukwu (2009), studied the impact of vehicular emis-

sion on ambient air quality in selected areas in Calabar. This was done by

monitoring the selected areas in Calabar for CO2, NO2, CO, SO2, particulate

matter (PM10) and noise level. The ambient temperature, wind directions,

wind velocity and traffic count were also monitored.CO, SO2, NO2, and

PM10 were determined using standard method; CO was monitored using a

portable analyzer model 2002, SO2 were collected using APM 410 and 415

sampler. The traffic count was done manually and the ambient temperature,

wind direction and wind velocity were monitored with a portable weather sta-

tion (Davis Ventage Pro-2, USA). The study revealed that transport-related

pollution in Calabar is significant with possible severe health consequences.

The study further revealed that pollution at traffic intersection was threat-

ening and that motor vehicles remain the dominant sources of urban air

pollution.

Olajire et al (2011) evaluated exposure to hazardous air pollutants

along Oba Akran Road, Lagos, using multivariate analysis in order to de-

termine the contribution of different sources. It was found that the main

principal components extracted from the air pollution data, were related to

gasoline combustion, oil combustion and ozone interaction. Also, there were

relatively high exposure levels of CO and PM10 along Oba Akran Road.

PM10 and CO along Oba Akran Road were highly traffic-related with possi-

ble severe health consequences.

In the paper, ”Impact of Traffic Emission on Air Quality Standard in

a Developing City in Nigeria”, Jimoh and Ndoke (2011) show that the city

of Minna is under the threat of traffic pollution. These findings could serve

as base-line information for urban development vis-a-vis traffic management

policy in Nigeria.

Despite the limitations, a model would appear to be the most prac-

tical way of assessing traffic-related exposure where routine surveillance is

concerned. Information such as vehicle density, type of vehicle, risk of traffic

congestion, presence of bus stops and street crossings, distance of residences

to roads, street width, type of street, building presence and type of mete-

orological conditions (e.g. wind speed and direction, absolute temperature
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and temperature differences, global and gamma radiation) could be collected

routinely for use in a variety of models for predicting exposure to NO2 and

PM10. The model could be used to estimate exposures on all the streets

within a certain radius of the home or place of work as dispersion of pollu-

tants from these streets may also be affecting the individual. In a sophis-

ticated model, it may be possible to make adjustment for the height of an

individual’s residency or place of work in high rise buildings to account for

the vertical dispersion of pollutants. Such a system could also be used to

estimate exposures at previous residences, work places or schools of an indi-

vidual so that an assessment of lifelong exposure could be made as accurately

and practically as possible. However, the latter might be too complicated for

a routine monitoring system.

2.3 Review of Vehicular Emission Model

Various models are developed to estimate emissions. This is an area

where substantial amount of research work is being conducted. Vehicular

emission factors are critical aspects that are considered in the transportation

planning process of freeway facilities.

2.3.1 Statistical Models

The various statistical models developed to estimate vehicular emissions

are discussed as follows.

Fuel Consumption and Emission Modeling Considering
Power Demand as a Predictor Variable

Abhishek in his (Msc) Thesis explained that his emission model was

based on the instantaneous power demand experienced by the vehicle. The

data were obtained from dynamometer testing. About 177 in-use Australian

vehicles were used to collect the data. Motor vehicles are driven on dy-

namometer simulating on-road conditions covering a wide range of speed

and loads.On-road instantaneous power is derived from vehicles mass, drag,

velocity, acceleration and road-gradient. This model can be applied for any
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traffic situation if the on-road power demand is known. Validation of the

model was carried out using an on-road power method i.e., by driving over

2281 links and 956 km recording the on-road velocity,acceleration, and gra-

dient data. The models developed for estimating fuel consumption and emis-

sions considering power demand as a predictor variable performed well for

long trips.

HC(g/mile) = α + βZtot ; Ztot > 0 (2.4)

= α ; ≤ 0 (2.5)

HC = hydrocarbon

Ztot= overall instantaneous total power demand in kW

α and β = vehicle parameters (Note: vehicle parameter can vary for each

vehicle)

Microscopic Models Developed to Estimate the Fuel
Consumption and Emission Rates

The models developed in a Masters Thesis by K. Ahn have two predictor

variables: speed and acceleration. Eight light duty vehicles were used to col-

lect the data. The data collected by the Oak Ridge National Laboratory were

used to develop these models. The models were developed considering speed

and accelerations as predictor variables on a 19 second-by-second basis for

individual vehicles. Two types of mathematical models, nonlinear regression

models and neural network models were studied as part of this research. To

validate the models developed for fuel consumption and emission rates, three

methods were adopted: FTP cycle test, US06 cycle test, and Generalization

test.

Non-linear regression model

log(MOEe) =
3∑
i=0

3∑
j=0

(Ke
i,j × si × aj) (2.6)

where MOEe=Fuel Consumption or emission rates (lt/hr or mg/s)

k = model regression coefficients

s = speed (m/s)

28



UNIV
ERSITY

 O
F I

BADAN LI
BRARY

a = acceleration (m/s2)

Neural network model

MOEe = F 3(W 3F 2(W 2F 1(W 1p+ b1) + b2) + b3) (2.7)

where MOEe = fuel consumption or emission rates (lt/hr or mg/s)

W 1;W 2; and W 3 = model coefficients

b1; b2; and b3 = bias matrices

p = an input vector containing pairs of (speed; acceleration) used as predic-

tor variables.

F 1= nonlinear transfer function (hyperbolic tangent sigmoid, F = 1
1+e−n

)

F 2 and F 3 = nonlinear transfer function (logarithmic sigmoid; F = en−e−n
en+e−n

)

There are some limitations to these models. Start up emissions and ambi-

ent temperatures were not considered, which will significantly affect the fuel

consumption and emission rates.

Statistical Model Developed for Estimating Nitrogen
Oxide Emissions from Light Duty Gasoline Vehicles

This model considered engine load as the major factor, which affects

the NOx emission rates. The predictor variables are modal activity vari-

ables, which are used to estimate the emission rate. The in-use vehicle

emission testing database compiled by United States Environmental Pro-

tection Agency (USEPA) was employed in developing the model, which con-

tains 17,417 test results on hot stabilized testing cycles. Furthermore, the

data was constrained by limiting the types of vehicles to light duty vehicles

(LDV). Therefore, a total of 13,012 vehicle test results, representing 7,151

unique vehicles were tested. This data set contains 114 variables in which

50 variables, were taken for the purpose of analysis. Two types of regression

techniques, the Hierarchical tree based regression (HTBR) and the Ordinary

least-squares (OLS), were used to develop the model.

This model is a complicated one as the inputs are derived from the

combustion mechanism and simulation of the fuel flow characteristics from

the intake through the combustion chambers to the exhaust system.
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2.3.2 On-Road Emission Measurements

There are three different kinds of on-road emission measurements:

• Federal test procedure

• Remote sensing

• On-Board measurement

2.3.3 Federal Test Procedure (FTP): (FTP Review Project,
EPA, May 1993)

The FTP is used to test vehicles for compliance with emission standards.

The current test procedure used in the U.S. is referred to as FTP75. The

FTP is conducted on a dynamometer for different driving cycles. The FTP is

used to measure the concentrations of different pollutants, such as HC, CO,

NOx and CO2. Both the evaporative and exhaust emissions are measured by

dynamometer testing under several simulated situations. Evaporative emis-

sions are measured after heating the fuel tank to simulate heating by the sun,

i.e. diurnal test, and then the car is driven for some time and parked with the

hot engine, i.e. hot soak test. Exhaust emissions were measured by driving

the vehicles on a dynamometer for different simulated driving cycles. The

vehicle is run on the dynamometer under two conditions. The first condition

is cold start, i.e. after a period of non-use, and the second condition is hot

start, i.e. while the engine is still hot. The FTP considers factors like am-

bient temperature, humidity, vehicle speed, fuel consumption, aerodynamic

loss and vehicle inertia. Although the dynamometer is a reliable method for

emission estimation, the drawback is that the dynamometer testing method

may not simulate real world driving conditions and it may not consider short

term events that will cause high emissions.

2.3.4 Remote Sensing

The Remote Sensing Device (RSD) was developed in the late 1980s at the

University of Denver (US Remote Sensing Experience, Niranjan Vescio CITA

conference, 2002).The RSD collects data, like speed and acceleration, cap-

tures license plate, and emission measurement of pollutants, like CO, NOx,
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and HC. The RSD operates by continuously projecting two beams across

the roadway . One is non-dispersive Infrared Spectroscopy, which is used to

measure the concentrations of HC and CO and the other beam is Dispersive

Ultraviolet Spectroscopy, which is used to measure the NOx emissions. As

the vehicle passes through the beam, the emissions are calculated. The main

advantage of a remote sensing device is that it identifies the high emitting

vehicles and can measure a large number of on-road vehicles. The major

disadvantage of using the remote sensing device is that it will not measure

evaporative emissions. It gives the instantaneous estimate of emissions at a

specific location, and it is not suitable for bad weather conditions.

2.3.5 On-Board Measurement

The on-board measurement system is used to measure the exhaust emis-

sions from vehicles under real-world travel conditions. This methodology

has advantages over both dynamometer and remote sensing methods. The

dynamometer testing method does not measure the emissions for real-world

conditions and the remote sensing device method measures the emissions

at a particular location, whereas the on-board measurement measures the

emission rates under real world conditions and for all driving conditions. In

on-board emission measurements, there are many factors considered while

measuring the emissions. Such factors include, like speed, different driving

modes (idle, acceleration, deceleration and cruising), ambient temperature,

humidity, and different traffic conditions. In Ahn’s masters thesis, on-board

data is used in developing a model for carbon dioxide emission rate. An anal-

ysis of the difference in emission rates while considering the accelerations and

deceleration versus constant speed was also performed. For the analysis, the

data from on-board and Mobile 6.2 were used. Mobile 6.2 does not consider

variable accelerations and deceleration while estimating the emission rates.

2.4 Modelling Software

There are many software tools for estimating the vehicular emission rates

of different pollutants. The most popular tools used in the U.S. to estimate

emission rates are Mobile 6.2 and Emission Factor Model (EMFAC).
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2.4.1 EMFAC

EMFAC is the emission factor model used to calculate the emission in-

ventories of on-road vehicles in California. EMFAC is a model in which the

emission rate data and activity data are combined to calculate the emission

inventory. The emissions for the following pollutants are calculated: CO,

NOx, HC, CO2, lead, PM, and oxides of sulfur. Both exhaust and evapora-

tive emissions are calculated for 13 different classes of vehicles. The model

can estimate the emission rates for any calendar year between 1970 and 2040.

2.4.2 Mobile

A brief history of the Mobile source emission factor model is as follows :

Mobile 1: The first Mobile model was developed in 1978 to estimate the

highway vehicle emission factors.

Mobile 2: In 1981, the model was updated with the new in-use data. The

new data of emission controlled vehicles for higher ages and mileages was

added to the model.

Mobile 3: In 1984, the model was updated with the new in-use data. In this

updated version of Mobile, anti-tampering programme benefits were added

to the model and eliminated the California vehicle emission rates.

Mobile 4: In 1989, the model was updated with the new in-use data. In Mo-

bile 4, evaporative running losses were added for gasoline powered vehicles

and modeled fuel volatility (RVP) effects on exhaust emission rates.

Mobile 4.1: In 1991, the model was updated with the new in-use data. In

this updated version of Mobile, the impact of oxygenated fuels on CO was

included, added many features, which allow the user to control more pa-

rameters that affect the emission levels, and included more inspection and

maintenance (I/M) programme designs.

Mobile 5 and Mobile 5a: In 1993, the Mobile 5 model was updated with the

new in-use data. In this updated version, the effects of reformulated gasoline

and the impact of oxygenated fuels on HC emissions were added. Later, after

four months, Mobile 5a was issued. Many errors, which were detected under
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specific conditions, were corrected in this updated version.

Mobile 5b: In 1996, the model was updated with the inclusion of the impacts

of onboard refueling vapor recovery system, reformulated gasoline require-

ments, and expanded calendar year range from 2020 to 2050 for which the

emission rates can be estimated.

Mobile 6: In 2002, the model was updated by including the effects of air con-

ditioning and high acceleration driving and expanding the classes of vehicles

from eight to twenty eight.

Mobile 6.2: In 2004, the model was updated by adding the ability to estimate

the emission factors for particulate matter and six air toxins.Each version of

the Mobile model becomes more sophisticated in estimating the emission fac-

tor for different pollutants and different classes of vehicles. The new version

of Mobile (Moblie 6.2) provides users more advanced options to modify the

emission factor estimates according to specific times and geographic loca-

tions.

Mobile estimates the emission factor for different pollutants, like HC, CO and

NOx for different classes of vehicles. The Mobile model was written in FOR-

TRAN. FORTRAN is a computer programming language that is suitable

for numeric computations and scientific computations. The Mobile model

estimates emission factors for both exhaust emissions (tailpipe) and evap-

orative emissions. In estimating the emissions factors, the model considers

various factors, including vehicle population, vehicle activity, and meteoro-

logical factors (temperature, humidity, and type of fuel). The interface of

this modelling software is DOS.

Mobile 6.2 estimates the CO2 emissions in a very simplistic way. The CO2

calculations are based on the fuel economy performance estimates built into

the model or supplied by the user. For other pollutants Mobile 6.2 considers

various factors such as vehicle activity, speed, and meteorological data to es-

timate emission rates. But for the CO2 pollutant Mobile 6.2 does not adjust

to the speed, temperature, and other factors.

Some of the other modeling software tools which calculate the emission in-

ventories at micro level include MEASURE, FRESIM, and TRANSIMS etc.

These software tools are discussed below:

MEASURE: MEASURE, is built in a Geographic Information System (GIS)
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framework and is able to estimate emissions for specific vehicle and engine

operating modes(acceleration, deceleration and idling etc.). In developing

and validating the MEASURE modeling software, the EPA used vehicle ac-

tivity and emission data collected from different techniques which include

remote sensing devices, automobiles and trucks equipped with on-board in-

strumentation. The MEASURE model estimates both spatially and tempo-

rally vehicle activities that result in emissions.

FRESIM: FRESIM is a traffic simulation model used for freeway analysis.

At the micro level of detail, traffic-simulation models can be combined with

modal or instantaneous emissions models to predict emission inventories.

Second by second vehicle trajectory data is generated and used as input to

modal emission model. The resulting emission data from all the vehicles are

then integrated to provide a total emission inventory.

The advantage of the micro level models is that they are best in estimating

changes in emissions resulting from strategies that affect traffic flow and can

account for the effects of the variance of driver behavior on emissions. The

limitation of the microscale level models is: vehicle trajectory data which in-

cludes velocity-acceleration lookup tables may not be available, or may have

old data, due to which emissions may not be calculated accurately.

2.5 Review of geoadditive models for other

areas of application

Geoadditive model, which combines the idea of geostatistics and additive

models, have been shown, over the years and by various researchers, to be

very useful in some other areas. Kamman and Wand (2003) have shown

that linear mixed models could be used for Geoadditive model fitting and

inference. However, several other scholars, such as Wood (2006), have treated

the same structure in other ways.

Extension of geoadditive models in the direction of generalized re-

sponses are contained in Fahrmeir and Echavarria (2006) and Zhao et al.

(2006). Zhao et al. (2006) deal with exponential family models; whilst

Fahrmeir and Echavarvia (2006) treat over-dispersed and zero-inflated count

data. Each used a Bayesian mixed model framework, with fitting via MCMC,
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and provide applications.

The extension of Geoadditive models to survival data has seen consid-

erably researched since 2003. Hennerfeind et al. (2006) developed geoadditive

survival models for both geographical point data and count data. They take

a Bayesian P-spline approach and use Gaussian and Markov random fields

for the spatial components. Kneib & Fahrmeir (2004) lay out the mathe-

matics under- pinning geoadditive hazard regression models. Kneib (2006)

extends these models to handle interval censored data. Adebayo & Fahrmeir

(2005) developed a geoaddditive discrete-time survival model and used it to

analyze child mortality data. Ganguli & Wand (2006) also deal with geo-

referenced survival data, and use the low rank radial smothers of Kamman &

wand (2003).Geoadditive models have also been adapted to model space-time

data. Fahrmeir et al. (2004) and Kneib & Fahrmeir (2005) used low dimen-

sional smooths, involving time and age, to model forest data, in conjunction

with Gaussian and Markov random fields for the spatial effects. Gryparis et

al. (2007) also involved space-time data, but their Geoadditive model is an

elaborate one that includes latent variable structure for multiple exposures

from mobile particulate matter.

Geoadditive models with missing data covariate are studied by French

& Wand (2004). Chen & Ibrahim (2006) extended that work to Geoaddi-

tive models that allow for specification of the covariate distribution and the

missing data mechanism.

Kamman & Wand (2003) used Geoadditive models to study the ge-

ographical variability of reproductive health outcomes (e.g birth weight) in

upper Cape Cod, Massachusetts, USA. The study showed that geoadditive

model is an effective vehicle for the analysis of spatial epidemiologic data and

other applications where geographic point data are accompanied by covariate

measurements. The low rank mixed model formulation allows a straight for-

ward implementation and fast processing of large databases, thus facilitating

the use of the model in the surveillance of disease clusters.

The Geoadditive model has been shown to be useful for an analysis of

the upper Cape Cod Reproductive data. It properly accounts for all covariate

information before producing disease maps. In the case of gestational age,

it has been seen that no residual geographical effect is present. The birth
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weight analysis is slightly suggestive, but geographical variation cannot yet

be concluded.

Nkurunziza et al. (2011) used Geoadditive model for modeling malaria

in Burundi. The data analysis was carried out using monthly data; semipara-

metric model was used to model the effects of both climatic covariates and

spatial effects on malaria distribution in Burundi.

Sarah and Wand (2011) developed a new method for generalized ex-

treme value geoadditive model analysis via Variational Bayes which was fast

for approximate inference in Bayesian Generalized Extreme value additive

model analysis. Such models are useful for flexibly assessing the impact of

continuous predictor variables on sample extreme. The new methodology al-

lows large Bayesian models to be fitted and assessed without the significant

computing cost of Monte Carlo methods.

Wand et al. (2011), in their work entitled Geoadditive Models to

Assess Spatial Variation of HIV Infections among Women in Local Commu-

nities of Durban, South Africa” used geoadditive model to assess nonlinear

geographical variation in HIV prevalence while simultaneously controlling for

important demographic and sexual risk factors. A total of 3469 women who

were screened for a phase III randomized trial were included in the current

analysis. The study revealed significant geographic variability in HIV in-

fection in the Ethekwini metropolitan municipal in KwaZulu-Natal, South

Africa.

Adebayo et al. (2013) applied Geoadditive model to modelling ge-

ographical variations and determinants of use of modern family planning

methods among women of reproductive age in Nigeria using reference cod-

ing. The study revealed considerable geographical variation in the use of

modern family planning. Variation was evident with an increase between

2003 and 2005 followed by a decline between 2005 and 2007. The effect of re-

spondent’s age was non-linear, and use of modern family planning was found

to differ significantly between never-married and currently/formerly married

respondents.
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2.6 Summary of literature review

Literature on various environmental models used in estimating environ-

mental data,statistical models, measurement method and modelling software

used in estimating the emission rates as well as geoadditive models for esti-

mating other areas aside the combination of health effects and environmental

has been reviewed. The next chapter describes the theoretical framework for

the research specifying the prior and the posterior.
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Chapter 3

MATERIALS AND
METHODS

3.1 Introduction

This chapter discusses the framework for the model by looking at the

priors and the posteriors which are utilized in developing the Geoadditive

model. In particular, we apply a Geoadditive Bayesian model in order to

estimate the effect of vehicular emission on individuals (18 years and below)

in four local government areas in Ogun state. Six different hospitals in the

state were observed for 3 years.

This chapter is divided into sections; the first section highlights the

various structural additive models, while the second section discusses the gen-

eral additive model and the third section discusses the geoadditive Bayesian

model. The fourth section describes the prior and the properties of the poste-

rior. Sixth section discusses the programme developed for the analysis. The

last section describes the data sources and description of the data.

3.2 THEORETICAL FRAMEWORK

3.2.1 Structured Additive Regression Models

The Structured Additive Regression Models(STAR) is based on the frame-

work of Bayesian Generalized Linear models (GLMs McCullagh and Nelder

1989 and Fahrmeir and Tutz, 2001). Generalized Linear Models assume that,

given covariates X and unknown parameters γ,the distribution of the response

variable y belongs to an exponential family with mean.µ = E(y/x, γ) linked
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to a linear predictor η by

µ = h−1(η), η = xTγ (3.1)

where h is a known link function and γ are unknown regression coefficients.

In STAR models (Fahrmeir et al. 2004; Brezger and Lang 2006), the lin-

ear predictor is replaced by a more general and flexible, structured additive

predictor.

η = f1(1) +−−−−+fp(z) + xTγ (3.2)

with

µ = E(y/x, z, γ, θ) (3.3)

and z represents a generic vector of all nonlinear modelled covariates. The

vector θ comprises all parameters of the functions f1,−−−, fp.The functions

fj are possibly smooth functions encompassing various types of effects.e.g

• Nonlinear effects of continuous covariates:fj(z) = f(z1)

• Two-dimensional surfaces: fj(z) = f(z1, z2)

• Spatially correlated effects:fj(z) = fspat(zs)

• Varying coefficients: fj = z1f(z2)

• Spatially varying effects: fj(z) = z1fspat(zs)orfj(z) = z1f(z2, z3)

• Random intercepts with cluster index c: fj(z) = βc

• Random slopes with cluster index c:fj(z) = z1βc

Structured additive regression models which cover a number of well known

model classes as special cases include:

• Generalized Additive Model (Hastie & Tibshrani, 1990)

• Generalized Additive Mixed Model (Lin & Zhang, 1999)

• Varying Coefficient Models (Hastie & Tibshrani, 1993)

• Geographical Weighted Regression (Fothering, Brunsdon & Charlton,

2002)
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• Geoadditive Model (Kamman & Wand, 2003)

The unified representation of a STAR predictor arises from the fact that

all functions fj may be specified by a basis function approach, where the

vector of function evaluations fj = (fj(z1),−−−, fj(zn))T of the i =1,- - -,n

observations can be written in matrix notation.

fj = zjβj (3.5)

where the design matrix zj depends on the specific term structure chosen for

fj and βj are unknown regression coefficients to be estimated. Hence, the

predictor may be rewritten as

η = Z1β1 +−−−−+Zpβp +Xγ (3.6)

where X corresponds to the usual design matrix for the linear effect.

3.2.2 General Additive Models For Nonlinear Regres-
sion Effects

A generalization of the smoothing prior is to generalize additive model

in regression; such models provide an approach to modelling possible non-

linearity but avoiding the need to specify complex algebraic forms. Thus,

for a metric outcome y1, ..., yn, assume there are corresponding values of a

regressor variate x1, ..., xn ordered such that

x1 < x2 < ... < xn (3.7)

The model for the observations may then be

Yt = β0 + f(xt) + εt (3.8)

where εt ∼ N(0, σ2)

Let gt = f(xt) be the smooth function representing changing, possibly non-

linear, impact of x on y as it varies over its range.

It is common to assume Normal or random walks in the first, second or higher

differences of the gt.
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A variant on this is when the smooth in the variable x modifies the effect of

a predictor Z, with

Yt = β0 + Ztβ1t + εt (3.9)

It will commonly be the case that the xt are unequally spaced, and it is

then necessary in specifying the prior for gt(orβ1t) to weight each preceding

point differently. This means adjusting the precision such that wider spaced

points are less tied to their predecessor than closer spaced points. Thus,

suppose the xt were irregularly spaced and that the spaces between points

δ1 = x2−x1, δ2 = x3−x2, ..., δn−1 = xn−xn−1.
Fahrmeir and Lang (2001) shows that a first order random walk smoothness

prior with Normal errors, would then be specified as

gt ∼ N(gt−1, δtτ
2) (3.10)

and a second order would be

gt ∼ .N(Vt, δtτ
2) (3.11)

where

Vt = gt−1(1 +
δt
δt−1

)− gt−2(
δt

δt−1
) (3.12)

If there is equal spacing then the first and second order random walk priors

are

gt ∼ N(gt−1, τ
2) (3.12)

gt ∼ N(2gt−1−gt−2, τ 2) (3.13)

3.3 Geoadditive Bayesian Model

There has been much recent work on Bayesian Regression methodol-

ogy that is sufficiently flexible to accommodate nonlinear and nonadditive

relationship between the response variable and the predictors. Constructs

used for such modelling include neural networks (Neal, 1996), Gaussian pro-

cesses (Neal, 1999) and regression trees (Chipman et al 1998; Denison et

al. 1998a). Spline-based methods have been investigated by (Denison et al.

1998b,1998c), (Shively et al ,1999), and (Smith and Kohn 1996,1997). These
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methods tend to involve a compromise; some of the computational and inter-

pretive simplicity of a linear model is sacrificed to obtain a flexible regression

function.

There is the need for a method that will retain such flexibility and

not sacrifice the computational and interpretive simplicity of a linear model.

A Geoadditive model in its real sense allows for spatial and temporal correla-

tions as well as nonlinear effects of covariates and unobserved heterogeneity.

In this research a Geoadditive Bayesian model will be considered

which caters for all the shortcomings of most of the Regression analysis as

well as retain its flexibility to accommodate nonlinear and nonadditive rela-

tionship between the response variable and the predictors.

3.4 Specification of Prior

In the Bayesian framework, the unknown smooth function fj, parameter

β, and the variance parameter σ2 are all considered as random, and therefore,

have to be assigned suitable priors. The usual approach is to assign diffuse

priors (uninformative prior) to the parameters of the fixed effects, that is βj

∝ constant j = 1. . .p.

The unknown smooth functions fj, j = 1- - - p, are estimated using the

Bayesian p-spline basis approach (Lang & Brezger 2004). In this approach, it

is assumed that the unknown functions can be approximated by a polynomial

spline of degree l defined by a set of equally spaced knots.

ξ0 = xmin < ξ1 < ...ξk−1 < ξk = xmax (3.14)

(Omitting the subscript j for convenience) over the domain of X. The spline

can be expressed as a linear combination of T =K+1, B-spline basis functions,

that is

f(x) =

p∑
t=1

βtBt(x) (3.15)

where Bt is the t-th basis function.

Now, let X be the n× p design matrix with (i,t)th element given by X (i,t)

= Bm(Xi)
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Then the Geoadditive model can be expressed in matrix notations as

η = X1β1 +X2β2 + ...+Xpβp + V γ (3.16)

Here βj (j = 1. . . p) are the unknown regression coefficients, whereas the

matrix V correspond to the design matrix for the linear effects. Eiler and

Marx (1996), in their frequentist setting, first and second order difference in

order to overcome difficulties involved with regression splines such as non-

flexibility (for smaller number of knots) or over-fitting (for large number of

knots). Lang and Brezger (2004) in their Bayesian setting proposed replacing

differences with stochastic analogues of first and second order random walks

given by:

βt = βt−1 + Ut (3.17)

(first order random walk) or

βt = 2βt−1 − βt−2 + Ut (3.18)

(second order random walk) with Gaussian errors Ut ∼ N(0, τ 2) and diffuse

(uninformative) priors β1 ∝ constant or β1β2 ∝ constant (for initial values).

The variance parameter τ 2 controls the amount of smoothness and is also

referred to as the inverse smoothing parameter. The amount of smoothness

is estimated by defining a hyperprior for the variance parameter τ 2. A usual

approach is to assign a conjugate prior for τ 2 which is the inverse Gamma

prior with hyperparameters a and b, τ 2 ∼ IG(a, b). Common choices for a

and b are a =1 and b = 0.005 (or b = 0.0005). Alternatively, one may take

a = b = 0.001.

Brezger and Lang (2006) also suggest a general structure of the prior as

βj/τ
2
j ∝

1

(τ 2j )
(rk)(Kj)/2

exp

(
−1

2τ 2j
β
′

jkjβj

)
(3.19)

where Kj is a penalty matrix which depends on the prior assumptions re-

garding smoothness of fj and the type of covariate.
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3.5 Proprieties Of The Posterior In Mixed

Model

3.5.1 Lemma 1: (Hennerfeind et al, 2006)

Consider the Gaussian mixed model defined as :

Y = V γ + Z1β1 + ...+ Zpβp + ε (3.20)

For observations y = (y1, ..., yn)′, with an additive predictor, and a Gaussian

error vector

ε = (ε1, ..., εn) ∼ N(0, τ 20 I)

The prior assumptions for the parameters γ and βj, j = 1,. . .,p are flat

priors.

P (γ) ≡ 1 (3.21)

For the vector γ of fixed effects

P (βj) ∝ τj
(−rj)exp

(
−1

2τ 2j
β
′

jKjβj

)
(3.22)

(1) rank (V) = P, rank (Z
′
RZ +K) = d,

where P = dim (γ) ,

d = d1 + ....+ dm = dim(β),

K = diag (K1, ..., Km), R = IV (V
′
V )− 1V

′

(2) the priors P (τ 2), j = 1, ..., p, are proper,

and∫
P (τ 2j )τ

(−(n−p−(d−r)))
0 exp

(
−SSE

2τ 20

)
dτ 20 <∞, where r = r1 + ...+ rm

(3.23)

Then the posterior distribution P (γ, β, τ 2/y) is proper.

With dj = dim(βj) and rj = rank(kj). For rj < dj the prior for βj is partially

improper and assume the following conditions hold

3.5.2 Corollary (1): (Hennerfeind et al, 2006)

For a linear mixed model (3.20) with prior (3.22) and

P (τ 2j ) ∝ 1

(τ 2j )aj+1
exp

(
−bj
τ 2j

)
(3.24)
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which are proper for aj > 0, bj > 0.

The posterior P (γ, β, τ 2/y) is proper if condition (i) of Lemma (1) and aj >

0, bj > 0, j = 1,. . ., p, n− p− (d− r) + 2a0 > 0, SSE + 2b0 > 0 hold.

3.6 Properties of the Posterior for

Generalized Geo-additive Models

3.6.1 LEMMA(2): (Hennerfeind et al, 2006)

Consider a generalized linear mixed model with observation densities fi(yi/ηi)

predictor

η = V γ + Z1β1 + ...+ Zmβ1 + Z0β0 (3.25)

And priors assumptions for the parameters γ and βj, j = 1,..., p are the same

.i.e a flat prior P (γ) ≡ 1 for the vector γ of fixed effects and

P (βj) ∝ τ
−rj
j exp

(
−1

2τ 2j
β
′

jKjβj

)
(3.26)

With dj = dim(βj) and rj = rank(Kj). For rj < dj the prior for βj is

partially improper. Priors for hyperparameters τ 2 = (τ 20 , ..., τ
2
m)
′
are P (τ 2) =∏m

(j=0) P (τ 2j ).

An important special case is inverse Gamma priors.

P (τ 2j ) ∝ 1

(τ 2j )(aj+1)
exp

(
−bj
τ 2j

)
(3.27)

Which are proper for aj > 0, bj > 0 and a possibly partially improper prior

P (β0) ∝ τ−r00 exp

(
−1

2τ 20
β
′

0K0β0

)
(3.28)

with r0 = rank(K0), such that

d0 ≥ dj, r0 ≥ rj, j = 1, ...,m

setting Z0 = I, β0 = ε ∼ N(0, τ 20 I).

In geoadditive models Z0β0 will usually represent a spatial effect with a MRF

or kriging prior, or an unstructured spatial effect.

Suppose that:

(i)

∫
fi(yi/ηi)dηi <∞
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holds for observations i = 1, ..., n∗ and

(ii) fi(yi/ηi) ≤M, i = n∗ + 1, n

holds for the remaining observations.

Denote the corresponding sub matrices of V, Z and Z0 by V ∗, Z∗ = (Z∗1 , ..., Z
∗
p), Z∗0 ,

and assume:

(iii) rank(Z∗0) = d0

the rank conditions (i) in Lemma (1) hold forV ∗, Z∗

condition (ii) in Lemma (1) holds with r0 replacing n and SSE replaced

by SSE∗ then the posterior P (γ, β0, β1, ..., βm, τ
2
0 , ..., τ

2
m/y) is proper. The

following corollary is easier to check.

3.6.2 Corollary (2): (Hennerfeind et al, 2006)

Assume that conditions (i), (ii) and the rank conditions for V ∗, Z∗, Z∗0 in

Lemma 2 hold, and that r0 − p− (d− r) > 0

with d = d0 + ... + dp, r = r0 + ... + rp, and aj > 0, bj > 0, j = 0,

. . . ,p hold for the inverse Gamma priors (3.28) then the posterior

P (γ, β0, β1, ..., βp, τ
2
0 , ..., τ

2
p /y) is proper

Proof

We consider first the simpler case of individual-specific random effects

β0 ≡ ε ∼ N(0, τ 20 I) using the one -to - one relation.

η = V γ+Zβ+ε between η and ε, we consider propriety of P (η, γ, β, τ 20 , τ
2/y)

instead of P (ε, γ, β, τ 20 , τ
2/y). Proceeding as in sun et al (1998), one starts

from

P (”η”, γ, β, τ 20 , τ
2/y) ∝ P (y/η)P (η/γ, β)P (β)P (τ 20 )P (τ 2) (3.29)

Using (ii) and η∗∗ = (ηn∗+1, ..., ηn) one arrives at

P (η∗, γ, β, τ 20 , τ
2/y) ∝

n∗∏
i=1

fi(yi/ηi)P (η∗/γ, β)P (β)P (τ 20 )P (τ 2) (3.30)

∝
n∗∏
i=1

fi(yi/ηi)P (γ, β, τ 20 , τ
2/η∗) (3.31)
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Applying Lemma (1) or Corollary (1) to

η∗ = V ∗γ + Z∗β + ε∗ε∗ ∼ N(0, τ 20 I) (3.32)

gives

P (η∗/y)
n∗∏
i=1

fi(yi/ηi) (3.33)

and propriety follows from (i) for the general case

η = V γ + Zβ + Z0β0 (3.34)

with prior (ii) for β0, we first decompose β0 into a (d0r0) dimensional sub-

vector. βfl0 with flat prior P (βfl0 ) ≡ 1 and a r0 - dimension subvector βpr0

with a proper prior

βpr0 ∼ N(0, τ 20 I)

β0 = Zfl
0 β

fl
0 + Zpr

0 β
pr
0 (3.35)

Where the d0 × (d0 − r0) matrix Zfl
0 contains a basis of the nullspace of

K0. The matrix Zfl
0 is the identity vector 1 for P spline with first order

random walk prior. Markov-random fields and 2d-P-splines with MRF prior

for the coefficients. For P-splines with second-order random walk prior. It is

a two column matrix whose first column is the identity vector and the second

column is composed of the (equidistant) knots of the spline. Where the d0×
(d0−r0) matrix Zfl

0 contains a basis of the nullspace of K0. The matrix Zfl
0 is

the identity vector 1 for P-spline with first-order random walk prior. Markov-

random fields and 2d-P-splines with MRF prior for the coefficients. For P-

splines with second-order random walk prior. It is a two column matrix,

the first column of which is the identity vector and the second column is

composed of the (equidistant knots of the spline. The d0 × r0 matrix Zpr
0 is

given by

Zpr
0 = L(L

′
L)−1

Where L = S
′
Λ1/2 is obtained from the spectral decompositionK0 = SΛS

′
ofK0.

It follows that

βpr0 ∼ N(0, τ 20 I)

Defining V̄ = (V, Z0, Z
fl
0 ), γ̄′ = (γ, βfl0 )

′
, Z̄0 = Z0Z

pr
0 , we can rewrite the

predictor as

η = V̄ γ̄ + Zβ + Z0β
pr
0 (3.36)
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For identifiability reasons, the columns of Z0Z
fl
0 are not contained in the

(d0 − r0) column space of V, so that rank (̄V ) = P + (d0 − r0).
Definining ε0 = Z0β

pr
0 , we have an additive mixed model.

η = V̄ γ̄ + Zβ + ε0 (3.37)

3.7 BayesX Software

BayesX is a software tool for estimating structured additive regression

models. Structured additive regression embraces several well-known regres-

sion models such as Generalized Additive Models (GAM), Generalized Ad-

dditive Mixed Models (GAMM), Generalized Geoadditive Mixed Models

(GGAMM), Dynamic Models, Varying Coefficient Models (VCM) and Ge-

ographical Weighted Regression within a unifying framework. Besides ex-

ponential family regression, BayesX also supports non-standard regression

situations such as regression for categorical responses, hazard regression for

continuous survival times, and continuous time multi-state models. Estima-

tion of regression models can be achieved based on two different inferential

concepts: Markov Chain Monte Carlo Simulation techniques corresponding

to full Bayesian inference and mixed model methodology corresponding to

penalised likelihood or empirical Bayes inference. There are currently three

regression tools implemented in BayesX :

(1) MCMC Simulation techniques (Bayesreg Objects) : A fully Bayesian

interpretation of structural additive regression models is obtained by spec-

ifying prior distributions for all unknown parameters. Estimation can be

facilitated using Markov Chain Monte Carlo Simulation Techniques, a gen-

eral and versatile concept for Bayesian inference. Bayesreg objects provide

numerically efficient implementations of MCMC schemes for structured ad-

ditive regression models.

(2) Mixed Model Based Estimation (Remlreg Objects) : An increasingly

popular way to estimate semiparametric regression models is the represen-

tation of penalization approaches as mixed models. Within BayesX, this

concept has been extended to structured additive regression models and sev-

eral types of non-standard regression situations. The general idea is to take

advantage of the close connection between penalty concepts and correspond-

48



UNIV
ERSITY

 O
F I

BADAN LI
BRARY

ing random effects distributions. The smoothing parameters of the penalties

then transform to variance components in the random effects (mixed) model.

While the selection of smoothing parameters has been a difficult task for a

long time, several estimation procedures for variance components in mixed

models with marginal likelihood as the non-Gaussian counterpart have been

particularly successful.

Remlreg objects employ mixed model methodology for the estimation of

structured additive regression models. While regression coefficients are es-

timated based on penalized likelihood, restricted maximum likelihood or

marginal likelihood estimation forms the basis for the determination of smooth-

ing parameters. From a Bayesian perspective, this yields empirical Bayes/

posterior mode estimates for the structured additive regression models. How-

ever, estimates can also merely be interpreted as penalized likelihood esti-

mates from a frequentist perspective.

(3) Penalized least squares including model selection (Stepwisereg Objects):

BayesX provides a penalized least squares (respectively penalized likelihood)

approach for estimating structured additive regression tools. In addition

to the previously described estimation alternatives a powerful variable and

model selection tool is included. Model choice and estimation of the param-

eters is done simultaneously. The algorithms are able to decide whether a

particular covariate enters the model, decide whether a continuous covari-

ate enters the model linearly or nonlinearly, decides whether a spatial effect

enters the mode, decides whether a unit - or cluster specific heterogeneity

effect enters the model, selects complex interaction effects (two dimensional

surfaces, varying coefficient terms), and selects the degree of smoothness of

nonlinear covariate, spatial or cluster specific heterogeneity effects.

Inference is based on penalized likelihood in combination with fast algorithms

for selecting relevant covariates and model terms.

For this research the MCMC simulation techniques implemented is based

on full Bayesian interpretation. The prior distribution of the parameter is

specified for all unknown parameters and effect coding is used to capture the

spatial effect bringing about the Geoadditive Bayesian Model.
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3.8 Data Sources and Description

The study was carried out in Ogun state, one of the 36 states of the

Federal Republic of Nigeria. It is located in the south-western zone of the

country. It occupies a total land area of 16409.26 sq.km. The estimated

population of the state by 1991 census was put at 3,214,161. The state is

composed of 20 Local Government Areas. It is bounded in the North by Oyo

and Osun, in the south by Lagos and in the west by Republic of Benin. The

state capital, Abeokuta, is 100 km North of Lagos, the commercial nerve

centre of the country. The state is located in latitude 6o and 7o40
′
N of the

equator and longitude 2o20
′
E and 4o35

′
East of the Greenwich meridian. The

samples were taken from four local government areas of the state, namely

Abeokuta, Sagamu, Ijebu-Ode and Sango-Ota. They are located in latitude

7005
′
N and 7o28

′
N of the Equator and longitude 3o10

′
E and 3o28

′
E of the

meridian, latitude 6o40
′
N and 6o53

′
N of the equator and longitude 3o29

′
E

and 3o50
′
E of the Greenwich meridian, 6o40

′
N and 6o50

′
N of the equator and

longitude 3o59
′
E and 41o10

′
E of the Greenwich meridian, 6o30

′
N and 6o42

′
E

of the equator and longitude 2o57
′
E and 3o20

′
E of the Greenwich meridian

respectively. Six hospitals (one from each of the six LGAs) were selected for

the study. The hospitals include Federal Medical Centre Abeokuta, Sacred

Heart Hospital Lantoro, General Hospital Abeokuta, General Hospital Sango

Ota, Olabisi Onabanjo University Teaching Hospital and General Hospital,

Ijebu-Ode.

The study population include individuals of 18 years and below.

A total number of 9211 respondents (individuals) were sampled; they were

investigated for their health status. 1800 respondents were selected from Fed-

eral Medical Centre, 1500 from Sacred Heart Hospital, 1500 from State Hos-

pital Abeokuta, 1500 from General Hospital Sango- Ota, 1800 from Olabisi

Onabanjo University Teaching Hospital and 1111 from General Hospital,

Ijebu-Ode. The selection was conducted over a period of 3 years (2008-

2011).

These hospitals were selected with consideration for their proximity to the lo-

cation of vehicular emission collection points. Ethical approvals were sought

and obtained from the management of each hospital.
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Three personnel were engaged from the health record of each hos-

pital for the purpose of collecting information from patients’ records. The

personnel were trained on how to extract information about patients diag-

nosis, number of times the patients visited the hospital in a week and the

patients outcome (dead or alive). The proximity of patients’ residential ad-

dress to areas where vehicular emission were collected was considered in the

recruitment of the respondents.

The effects of vehicular emmision on health of individuals was mon-

itored in selected areas of Ogun state. The areas were Abeokuta, Ijebu-Ode,

Sagamu and Sango-Ota. Each of these areas has different sample points of

which CO, CO2, HC were monitored. The four areas have sample points

selected for collection in the priority of high population, traffic congestion

and proximity to the selected hospitals.

Five people (research assistants ) were engaged and trained for the

purpose of collecting data from moving vehicles .i.e both commercial and

private vehicles in the second half of the observation collection. The data

was collected for 5 days in a week and this went on for the study period of 3

years. An average of twelve vehicles were seen per day.

The equipment used for the collection of the emitted pollutants from

the vehicle was called Kane Gas Analyzer. Kane Gas Analyzer is used to

measure both the efficiency of combustion and the levels of pollutant gases.

It is suitable for all appliances and burning natural gas i.e hydrocarbons.

It accurately checks CO levels, measure O2, CO/CO2 ratio and efficiency.

The result can be printed using the optional infrared printer. It works with

multi-fuel, gases and oils. It has a detachable fuel probe with a low cost of

ownership.

The analyser is attached to the smoke centre of the vehicle to collect the pol-

lutants. In this study a total of 9211 vehicles were tested for their emission

status.
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3.9 Predictor Variables in the Analysis

The Predictor variables are:

Age of vehicle (Agev): This is the difference between the year of manufac-

turing of the vehicle and the year of study.

Vehicular Pollutants : A pollutant is a waste material that pollutes air, wa-

ter or soil. Vehicular pollution is caused by the emission of exhaust into

the surroundings. Three different vehicular pollutants were considered for

the study, namely, Carbonmonoxide (CO), Carbondioxide (CO2)) and Hy-

drocarbon (HC).

Fuel type (ft): Two fuel types were considered for the study namely petrol

and diesel.

Type of vehicle (tv): for the study, vehicles were classified into three cate-

gories, namely, five passenger vehicle (cars), more than five passengers vehi-

cles (buses) and others.

Vehicle-use (use): This implies what the vehicle is used for (i.e. either for

private or commercial purpose).

Diagnosis (diag): Patients diagnosis was based on children with respiratory

health problems such as asthma, pneumonia, bronchitis and other cardiovas-

cular diseases.

Number of visit (nv): Number of visits is the number of times a child visits

the hospital in a week on respiratory health related problems.

Location : four locations were selected for the study and Abeokuta, which

was the largest of them, was used as the reference category.
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Chapter 4

RESULTS AND
DISCUSSIONS

4.1 Introduction

This chapter is devoted to the application of geoadditive bayesian model

in the area of environmental and health effects. The concept of geoadditive

Bayesian model is presented. In section 4.2, the model is presented, while

section 4.3 presents the model extension, incorporating a new random com-

ponents using the Bayesian approach. In section 4.4 the estimate of all the

components of the model using the concept of finite difference and partial

derivatives is presented, and in section 4.5 and 4.6 the prior and the posterior

for the geoadditive Bayesian model are specified. In section 4.7 we discuss the

properties of the posterior and, in section 4.8 the R code for implementing

structured additive regression model is written.

Section 4.9 application presents the result of the estimation and the

analysis. Finally, performance of the model is assessed and discussed.

4.2 The Model

Geoadditive Models, introduced by Kammann and Wand(2003), analyze

the spatial distribution of the study variable while accounting for possible

linear and non-linear covariate effects.Under the additivity assumption they

can handle such covariate effects by combining the ideas of additive models

and kriging, both represented as linear mixed model. According to Kam-

man and Wand (2003), incorporation of a geographical component can be

achieved by expressing kriging as a linear mixed model and merging it with
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an additive model such as equation 4.1:

Y = Xβ + Zb+ ε (4.1)

cov

 u

ε

 = 0, cov

 u

ε

 =


σ2
sI 0 0

0 σ2
t I 0

0 0 σ2
εI


to obtain a single mixed model, which we call the Geoadditive model.

Suppose that the data are (xi, yi), 1 ≤ i ≤ n, where the yis are scalar and

Xiε<2 represents geographical location, the simple universal kriging model

for such data is

yi = β0 + β
′

1xi + S(xi) + εi (4.2)

where S(x) : xε2 is a stationary zero-mean stochastic process and the εi

are assumed to be independent zero-mean random variables with common

variance σ2
ε and distributed independently of S (e.g Cressie, 1996). Prediction

at an arbitrary location x0ε<2 is typically done through an expression of the

form.

ŷ(x0) = β̂0 + β̂1
′

x0 + Ŝ(xi) + εi (4.3)

where β̂0 and β̂1 are estimates of β0 and β1 respectively and Ŝ(x0) is an empir-

ical best linear unbiased prediction of S(x0). However, for fitting purposes,

we should reparameterized to :

y = Xβ + Z̃ũ+ ε (4.4)

where Z̃ = ZΩ−
1
2 and cov ˜(u) = σ2

xI, and utilize the variance component

structure. In view of equation (4.1) and (4.4) the geoadditive model

Yi = β0 + f(si) + g(ti) + β
′

1xi + S(xi) + εi (4.5)

εi ∼ N(0, σ2
ε)

where f and g are unspecified smooth functions of si and ti, and S is an

unspecified bivariate smooth functions.Then the model has representation is

now trivial to formulate as a single linear mixed model. Put
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X = [1 si ti xTi ]1≤i≤n,

where Zs and Zt are defined and has representation

Y = Xβ + Zu+ ε (4.6)

where Z = [Zs|Zt|Zx], Zx = Z̃

u =


us

ut

ũ

 , cov

 u

ε

 =



σ2
sI 0 0 0

0 σ2
t I 0 0

0 0 σ2
xI 0

0 0 0 σ2
εI


4.3 Model Extension

Kamman and Wand (2003) combine the idea of kriging and additive model

. Heinnerfeind et al. (2006) used Cox model in their application and they

applied it to effect of area of residence on Coronary Artery Disease bypass

Graft(CABG).

A possible extension by Hennerfeind et al (2006) is :

ηit = β0 + Z
′

itf(t) +
∑

fj(xij) + fspat(si) + V
′

itβ (4.7)

where: β - baseline effect

Zi(t) - time varying effect

f(t) - non linear effect

fj(xij)- unknown smooth function of x

si- is the district where subject i resides

fspat is the spatial smoothing function for geographical location si where sub-

ject i resides

fstr(si) modelled by a Markov random field prior

zi(t) time varying effect of covariates zj

In this work, we will consider the geoadditive model of this form using

Bayesian approach;

ηi(t) = β0 + ZT
i (t)fi(t) +

p∑
j=1

fj(xij) + fsp(si) + βxi + V T
i (t)γ (4.8)
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In the equation above, we define;

ηi(t) as Linear predictor

β0 as a vector matrix of the form β = (β
′
1, ..., β

′
m)
′

ZT
i (t) as the transpose of the matrix Zi = (Z1, ..., Zm)

fi(t) as the time varying effects of covariates Zi

fi(xij) as the nonlinear effect of a continuous covariate xj

fsp(si) as a spatial effect

βxi = gi = fx as a new random component which could be the uncorrelated

spatial effect and V
′
i (t) is a fixed effect.

βx ∼ N(0, τ 2).

Assuming that we consider (4.8) under generalized linear and additive mixed

models, equation (4.8) is seen as predictor for the observations Yi, such that:

Yi = β0 + f(si) + g(ti) + β
′

ixi + εi (4.9)

It follows apparently that the models under consideration have the densities

of the form (Sun et al., 1999)

fi(yi/xi) (4.10)

The partially improper priors in the predictor are: β0, fi(t), gi and γ, such

that we have a flat prior

P (β0) ≡ 1 (4.11)

P (γ) ≡ 1 (4.12)

Since β0 and γ are vectors of fixed effects. Because fi(t), gi = βx = fx are

vectors of varying or random effects, their flat prior are given as

P (fi(t))ατ
−τi
i exp

(
−1

2τ 2i
f́i(t)kif

(t)
i

)
(4.13)

P (gi) = P (βx) = P (fx) ∝ τ−iτ exp

(
−1

2τ 2i
giDigi

)
(4.14)

It is good to note that the priors for the hyper-parameters

τ 2 = (τ 20 + τ 21 + τ 22 + τ 23 + τ 24 + τ52 + τ 26 ) are given by:-

P (τ 2) =
6∏
i=0

P (τ 2i ) (4.15)
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This is because we are considering 6 different hospitals. For the term ZT
i (t)fi(t)

for i=0, we obtain Z
′
0(t)f0(t) which usually represents a spatial effect with

MRF or Kriging prior, or an unstructured spatial effect and all these are a

types of a random effect. Recall that in a geoadditive model with predictor:

η = V β + Z1β1 + Z2β2 + ...+ Zmβm + Z0β0 (4.16)

Z0β0 will usually represent a spatial effect with a Markov random field or

Kriging prior, or an unstructured spatial effect. Bringing this understanding

into our new model whose predictor is given as

ηi(t) = β0 + Z
′

i(t)fi(t) +

p∑
j=i

fj(xij) + fsp(si) + βxi + V
′

i (t)γ (4.17)

Where βx ∼ N(0, τ 2) i : 1(1)m, j = 1(1)P The above implies that:

For i=1, we have

η1(t) = β0 + Z
′

1(t)f1(t) +

p∑
j=1

fj(x1j) + fsp(s1) + βx1 + V
′

1 (t)γ (4.18)

For i=2,we have:

η2(t) = β0 + Z
′

2(t)f2(t) +

p∑
j=2

fj(x2j) + fsp(s2) + βx2 + V
′

2 (t)γ (4.19)

...

For i = m, we have

ηm(t) = β0 +Z
′

m(t)fm(t) +

p∑
j=m

fj(xmj) + fsp(sm) + βxm + V
′

m(t)γ (4.20)

In all these equations η = (η1, η2, ..., ηm).

The vector of evaluations of the function Zi(t)

Z1 = Z1(t1), Z1(t2), Z1(t3), ...Z1(t)
′

Z2 = Z2(t1), Z2(t2), Z2(t3), ...Z2(t)
′

=
...

...
...

Zm = Zm(t1), Zm(t2), Zm(t3), ...Zm(t)
′

fj = (fj(xij), fj(x2j), ..., fj(xmj))
′
, j = 1, 2, ..., p

57



UNIV
ERSITY

 O
F I

BADAN LI
BRARY

fspat = (fspat(s1), fspat(s2), ..., fspat(sm))
′

β = (βx1, βx2, ..., βxm)
′

vector of random component

From (4.18) to (4.20) the matrix form are:

η =



η1

η2

η3

η4

η5

...

ηm



′

βxi =



βx1

βx2

βx3

βx4

βx5

...

βxm



′

Z =



Z1

Z2

Z3

Z4

Z5

...

Zm



′

f(t) =



f1(t)

f2(t)

f3(t)

f4(t)

f5(t)

...

fm(t)



′

fj(x) =



∑p
j=1 fj(xi1)∑p
j=1 fj(xi2)∑p
j=1 fj(xi3)∑p
j=1 fj(xi4)∑p
j=1 fj(xi5)

...∑p
j=1 fj(xip)



′

fspat(s1) =



fspat(s1)

fspat(s2)

fspat(s3)

fspat(s4)

fspat(s5)

...

fm(t)



′

The equation (4.18) to (4.20) can be compactly written as :

η = β0 + Zf(t) + f(x) + fspat + fx + V γ (4.21)

η = β0 +Z1f1(t)+ ...+Z5f5(t)+Zmfm(t)+f(x)+fspat+fx+V γ (4.22)

Let V γ ∼= Z0f0(t) then (4.22) becomes

η = β0 + Z1f1(t) + ...+ Zmfm(t) + f(x) + fspat + fx + Z0f0(t) (4.23)

Another possibility is to take:

f(x) + fspat(s) + fx + V γ to be equal to Z0f0(t) such that

η = β0 + Z1f1(t) + ...+ Zmfm(t) + Z0f0(t) (4.24)
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It follows that if Zf(t) = Z1f1(t) + ...+ Zmfm(t) then

η = β0 + Zf(t) + Z0f0(t) (4.25)

Choosing f(t) as γ and f0(t) as β0, we have

η = β0 + Zγ + Z0β0 (4.26)

It is also possible for us to write (4.22) as follows:

η = Z0β0 + Zf(t) + ...+ ξ + V γ (4.27)

η = Z0β0 + Z1f1(t) + ...+ Zmfm(t) + f(x) + fspat + fx + V γ (4.28)

Where Z0 = I is an identity matrix. By this expression it follows that

η = Z0β0 + Zf(t) + ξ + V γ (4.29)

Where

ξ = f(x) + fspat + fx (4.30)

The expressions in (4.23), (4.25), (4.26) and (4.29) are all acceptable since

the terms in them are in vector form,if we decompose β0 into a (d0 − r0)

dimensional sub-vector βfl0 with flat prior P (βn0 ) ≡ 1 and a r0 dimensional

sub-vector βpr0 with a prior

βpr0 ∼ N(0.τ 20 )I

Then,

β0 = Zfl
0 β

fl
0 + Zpr

0 β
pr
0 (4.31)

where the d0 × (d0 − r0) matrix Zfl
0 contains a basis if the null space of K0,

Zfl
0 is an identity vector 1 for P splines with first order random walk prior ,

Markov random field and 2d- P - splines with Markov random field prior for

the coefficients.

The d0 × r0 matrix Zpr
0 is given by Zpr

0 = L(LTL)−1, where

L = STλ (4.32)

Equation (4.32) is obtained from the spatial decomposition

L = λST of K0 (4.33)
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It follows that

β0 = Zfl
0 β

fl
0 + Zpr

0 β
pr
0 (4.34)

Our aim is to obtain a model yi whose predictor is ηi and to determine the

corresponding terms in our predictor. Thus, our take off is i and i+1 be two

mesh points in the associated interval such that (4.28) becomes:

ηi = Z0β0+Z1f1(t)+...+Zmfm(t)+fi(xij)+fspat(si)+fxi+Viγ = yi (4.35)

and

ηi+1 = Z0β0 + Z1f1(t) + ...+ ZmfmZm+1fm+1(t)+

fi+1(xi+1) + fspat(si) + fxi+1 + Vi+1γ = yi+1 (4.36)

The assumption behind the expressions in (4.35) and (4.36) is that we

allow ηi and ηi+1 to coincide with yi and yi+1 respectively so as to be able

to determine the undetermined coefficients in the predictor, using differen-

tiation method and finite difference approach. Using(4.5)under the above

assumption and that the derivatives of ηi and ηi+1 exist continuously, we

obtain

ηi(t) = β0 +ZT
i (t)fi(t) +

p∑
j=i

fj(xij) + fsp(si) +βxi +V T
i (t)γ = yi (4.37)

ηi+1(t) = β0+Z
T
i+1(t)fi+1(t)+

p∑
j=i

fj(xi+1j)+fsp(si+1)+βxi+1+V
T
i+1(t)γ = yi+1

(4.38)

It follows that:

ηi+1(t)− ηi(t) (4.39)

= yi+1 − yi = β0 − β0 + ZT
i+1(t)fi(t)− ZT

i (t)fi(t)+

p∑
j=i

fj(xi+1j)−
p∑
j=i

fj(xij) + fsp(si+1)− fsp(si)

+βxi+1 − βxi + V T
i+1(t)γ − V T

i (t)γ (4.40)

From (4.39), we obtain the sum difference of

ηi+1(t)− ηi(t) = yi+1 − yi = β0 − β0 + ZT
i+1(t)fi(t)− ZT

i (t)fi(t)+

p∑
j=i

[fj(xi+1j)− fj(xij)] + fsp(si+1)− fsp(si)
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+βxi+1 − βxi + V T
i+1(t)γ − V T

i (t)γ (4.41)

This leads to

yi+1 − yi = ηi+1 − ηi (4.42)

yi+1 − yi = ZT
i+1(t)fi(t)− ZT

i (t)fi(t)+
p∑
j=i

[fj(xi+1j) + fsp(si)− fj(xij)] + fsp(si+1)− fsp(si)

+βxi+1 − βxi + V T
i+1(t)γ − V T

i (t)γ (4.43)

4.4 Determination of the Undetermined

Components

By using the concept of finite difference and partial derivatives, the undeter-

mined components of (4.8) are obtained as follows

dηi
dt

= ZT
i (t)f

′

i (t) + [ZT
i (t)]

′
fi(t) + [V T

i (t)]
′
γ (4.44)

dηi
dxij

=

p∑
j=1

f
′

i (xij) (4.45)

dηi
dsi

= f
′

sp(si) (4.46)

dηi
dx

= β
′

xi
(4.47)

From (4.44)

dηi
dt

= ZT
i

dfi
dxi

+
d

dt
ZT
i fi(t) +

d

dt
[V T
i (t)]γ (4.48)

From (4.45)

dηi
dxij

=

p∑
j=1

d

d
fi(xij) (4.49)

From (4.46)
dηi
dsi

=
d

ds
fsp(si) (4.50)

From (4.47)
dηi
dxi

=
d

dx
βxi (4.51)

According to Heinnerfield et al. (2006), the baseline hazard rate can be repa-

rameterized by choosing β0 = log λ0(t) and observation model is given by

λi(t) = λI(t : xi, zi, si, vi) = exp ηi(t)
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with Geoadditive predictor as defined in equation(4.8). Correspondingly, for

the unknown functions fj(xij), βxi, we assume Bayesian P-spline priors as

in Lang and Brezger (2004). For the Random Walk priors, Fahrmier and

Lang (2001) suggested that they may be used as smoothness priors for the

baseline effect and time-varying covariates effects in a piecewise exponential

model (Heinnerfeind et al. 2006)

In addition, the basic idea of P-spline regression by Eilers and Marx (1996)

will be used to approximate the unknown function as a linear combination

of B-spline basic function Bt:

fj(xij) =

p∑
t=1

βtBt(xj) (4.52)

where Bt are B-splines of degree I defined over a grid of equally spaced knots

xmin = ξ0 < ξ1 < ... < ξs = xmax; dj = I + s

According to Heinnerfeind et al. (2006) in a simulation study fspat(si) was

model as MRF using trigonometric functions to simulate for the spatial effect

and the nonlinear function.

fspat(si) = sin(xsi , ysi) (4.53)

fj(xij) = sin(xi) (4.54)

The baseline hazard rate λ0(t) is set to 3t2 which is a Weibull Hazard rate,

so that

β0(t) = log 3t2 (4.55)

To determine the undetermined coefficient of our predictor, we will be mak-

ing use of cubic spline and the random nature in the distribution of prime

numbers for a better performance setting fspat(si) as ;

fspat(si) = sin(xsi , ysi) + cos(xsi , ysi) (4.56)

According to Hennerfeind et al. (2006) as shown in (4.52) and (4.53) we

choose fj(xij) to be a replica of fspat(si) such that

fj(xij) = sin(xi) + cos(xi) (4.57)
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Thus,

fi(t) = P + log(Pt3) + 1 (4.58)

where P is an arbitrary prime number.

Also, we set our baseline hazard rate λ0(t) to Pt3, so that β0(t) = log(Pt3)

For βx we make use of a function which exhibits a random nature aside the

known trigonometric function that we have already used. Thus,

βx ≡ ePx (4.59)

where P is also a prime number since we are using the random nature in the

distribution of primes. γi is a fixed effect and we assume that is given by

γi = ±Γ−1P (4.60)

For the non-linear time-varying effect ZT (t), we model this by using a matrix

representation of the form

ZT (t) =


cos(Pt) cos t 0

cos t cos(Pt) e2Pt

0 e2Pt cos(Pt)2


P⊆prime number and the linear time-varying effect matrix as;

V T (t) =


3P P 2t 0

P 2 3Pt 3P 2t

0 3P 2t 1


The above mentioned matrices can be extended to fit into our model but

must always be square symmetric matrices. Thus, we are able to determine

the stepwise difference (forward difference) of our predictor as presented in

(4.37) and (4.40)

yi+1 = yi +


cos(Pti+1) cos ti+1 0

cos ti+1 cos(Pti+1) e2Pti+1

0 e2Pti+1 cos(Pti+1)
2




1

P

log(Pti+1)
3


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−


cos(Pti) cos ti 0

cos ti cos(Pti) e2Pti

0 e2Pti cos(Pti)
2




1

P

log(Pti)
3


+

P∑
j=1

[
[sin(xi+1) + cos(xi+1)]− [sin(xi) + cos(xi)]

]
+ [

[sin(xsi+1
, ysi+1

) + cos(xsi+1
), ysi+1

]− [sin(xsi , ysi) + cos(xsi), ysi ]

]
+

[ePxi+1 − ePxi ]

+

Γ−1(P )


3P P 2ti+1 0

P 2 3Pti+1 3P 2ti+1

0 3P 2ti+1 1

− Γ−1(P )


3P P 2ti 0

P 2 3Pti 3P 2ti

0 3P 2ti 1


From (4.44);

dηi
dt

= ZT
i (t)

[
d

dt
[1 + P + log(Pt3)]

]
+

d

dt


cos(Pt) cos t 0

cos t cos(Pt) e2Pt

0 e2Pt cos(Pt)2

 [1 + P + log(Pt3)]

+

d

dt


3P P 2t 0

P 2 3Pt 3P 2t

0 3P 2t 1

 γ

dηi
dt

=


cos(Pt) cos t 0

cos t cos(Pt) e2Pt

0 e2Pt cos(Pt)2


[

3Pt2

Pt3

]
+
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
−P sin(Pt) − sin t 0

− sin t −P sin(Pt) 2Pe2Pt

0 2Pe2Pt −2P sin(Pt)2

 [1 + P + log(Pt3)]

+

γ


0 P 2 0

P 2 3P 3P 2

0 3P 2 0



=
3

t


cos(Pt) cos t 0

cos t cos(Pt) e2Pt

0 e2Pt cos(Pt)2



+[1 + P + log(Pt3)]


−P sin(Pt) − sin t 0

− sin t −P sin(Pt) 2Pe2Pt

0 2Pe2Pt −2Pt sin(Pt)2


+

γ


0 P 2 0

P 2 3P 3P 2

0 3P 2 0


From (4.45);

dηi
dxij

=
P∑
j=1

[cos(xi)− sin(xi)]

From (4.46);

dηi
dsi

=
P∑
j=1

[cos(xsi , ysi)− sin(xsi , ysi)]

dηi
dxij

= PePxi

65



UNIV
ERSITY

 O
F I

BADAN LI
BRARY

4.5 Specification of Priors for the Geoaddi-

tive Bayesian Model

Brezger and Lang (2006) suggested a general structure of the prior as

βj \ τ 2j ∝ τ
−rj
j exp

(
−1

2τ 2j
β
′

jKjβj

)
(4.61)

In our work we will assume diffuse priors or weakly informative prior for

the fixed effect that is P (γ) ∝ const. This is the appropriate choice when

there is no prior knowledge. The uncorrelated random effects are assumed to

be i.i.d Gaussian, βx ∼ N(0, τ 2b ). τ 2b we assign a conjugate prior for τ 2 which

is the inverse Gamma prior with hyper parameters a and b i.e. τ 2 ∼ IG(a, b).

The effects of the continuous covariates are modelled by cubic p-splines with

20 equidistant knots and second order random walk penalty.Common choices

for a and b are a=1 and b=0.005 (or b=0.0005).12,000 iterations of the

MCMC were run using BayesX package with a burn-in phase of 2,000 it-

erations.Thinning was applied to the Markov Chain to reduce autocorrela-

tions, by requiring the programme to store only every 10th sampled param-

eter. Alternatively, one may take a=b=0.001, we take a = b= 0.001 as a

standard choice and to test for the sensitivity other values of a and b were

considered. We also consider cases of when a=b=0.00001,a=1,b=0.005 and

a=1,b=0.00005.

For the continuous(smooth) functions f1...f6,a second order random

walk prior is considered for f defined as follows. Consider the case of a

metrical covariate x with equally spaced observations xi, i = 1, ...,m,m ≤ n

(n is the number of observations). Suppose that x1 < ... < xt < ... < xm is

an ordered sequence of distinct values for a covariate and define f(t) = f(xt).

The second order random walk is then defined by

f(t) = 2βt−1 − βt−2 + Ut (4.62)

with Gaussian errors Ut ∼ N(0, τ 2).

A second order random walk penalizes deviations from the linear trend

2βt−1 − βt−2. Let β = (β
′
0.....β

′
m)
′

denote the vector of all regression co-

efficients and γ the vector of fixed effects, and τ 2 = τ 20 .....τ
2
m the vector of

all variance components. Fully Bayesian inference is based on the entire

66



UNIV
ERSITY

 O
F I

BADAN LI
BRARY

posterior distribution

p(β, γ, τ 2\x) ∝ L(β, γ, τ 2)p(β, γ, τ 2) (4.63)

Due to conditional independence assumptions, the joint prior factorizes into

p(β, γ, τ 2) = {
m∏
j=0

p(βj\τ 2j )p(τ 2j )}p(γ) (4.64)

The last factor can be omitted for diffuse fixed effect priors. In which case

these can be expressed as:∏
(θ) =

∏
(τ 2)

∏
(γ)
∏

(β/τ 2j , γ) (4.65)∏
(θ) =

∏
(τ 2j )

∏
(β/τ 2j ) (4.66)

where β ∼ N(0, τ 2j ) is chosen to be normally distributed and τ 2j ∼ IG(aj, bj)

∏
(τ 2j ) =

b
aj
j

Γa
(τ 2j )−aj−1e

bj

τ2

∏
(β/τ 2j ) =

1√
2Πτ 2j

e
−1

2τ2
j

(β)2

∏
(θ) =

∏
(τ 2j ) =

b
aj
j

Γa
(τ 2j )−aj−1e

bj

τ2 × 1√
2Πτ 2j

e
−1

2τ2
j

(β)2

Where for τ 2j :

a
′

j = aj +
rank(kj)

2

and

b
′

j = bj +
1

2
β
′

jkjβj∏
(θ) =

b
aj
j

Γaj
(τ 2j )−aj−1e

−bj
τ2
j × 1√

2Πτ 2j

e
−1

2τ2
j

β2

=
b
aj
j

Γaj
√

2(τ 2j )n/2
e
−1

2τ2
j

β2

(τ 2j )−aj−1

=
1

(τ 2j )
(rk(kj)

2

e
−1

2τ2
j

β
′
jkjβj

(τ 2j )−aj−1e

−bj
τ2
j
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4.6 Properties of the Posteriors

Consider a geoadditive model with predictor

η = V γ + Z1β1 +−−−+ Zmβm + Z0β0 (4.67)

in a generic form, where Z0β0 corresponds to an effect with prior.

β0 ∼ τ−r00 exp(
1

2τ 20
β′0K0β0) (4.68)

such that

dim(β0) = d0 ≥ dj, rank(K0) = r0 ≥ rj

, j =1- - - m.

This assumption is usually fulfilled for the spatial component or for a high

dimensional vector of group or individual specific correlated random effects.

Denote by ηu, Vu, Zu = (Ziu,− − −, Zmu), Zou the (sub-) predictor and sub-

design matrices corresponding to uncensored observations. Assume that the

following conditions hold

(C1) rank(Vu)= rank(V)= p = dim(γ)

rank(Zju) = rankZj = dj = dim(βj), j = 0,−−−,m

rank(Z
′

uRZu +K) = d (4.69)

where

d = d1 +−−−+ dm, K = diag(k1,−−−km), R = I − Vu(V
′

uVu)
−1V

′

u

(C2) The priors p(τ 2j ), j = 1,−−−,m, are proper,

and
∫
p(τ 20 )τ

−(r0−p−(d−r))
0 dτ 20 <∞,

where r = r1 +−−−+ rm

Theorem: If conditions (C1),(C2) hold then the posterior p(γ, β, β0, τ
2, τ 20 /y),

where τ 2 = (τ 21 ,−−−, τ 2m)
′

and β = (β1,−−−, βm), is proper.

Corollary: Assume proper inverse Gamma priors for τ 2j with

aj > 0, bj > 0, j = 0,−−−,m,

and

r0 − p− (d− r)− (d0 − r0) > 0
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If condition (C1) holds, then the posterior

p
(
γ, β, β0, τ

2, τ 20 \ y
)

is proper.

p+ d = rank

 V
′
uVu V

′
uZu

Z
′
uVu Z

′
uZu +K


Proof: The density of observation i is given by

fi(ti/ηi(ti) = λi(ti)
δiSi(ti),

where

λi(ti) = exp(ηi(ti), Si(ti) = exp(−
∫ ti

0

λi(s)ds)

For censored observations (δi = 0), we have fi(ti \ ηi(ti)) = Si(ti) ≤ 1, so

that condition

fi(yi/ηi) ≤M, i = n∗ + 1,−−−, n

holds.

For uncensored observations (δi = 1)

fi(ti/ηi(ti)) = λi(ti)Si(ti)

setting ηi := ηi(ti), λi := λi(t), we obtain∫ ∞
0

fi(ti \ ηi)dηi =

∫ ∞
0

λiSi(ti)λ
−1
i dλi =

∫ ∞
0

Si(ti)dλi

so that ∫
fi(yi \ ηi)dηi) <∞ =

∫ ∞
0

Si(ti)dλi <∞

4.7 Specification of Posterior for the Geoad-

ditive Bayesian Model

The posterior is obtained by combining the prior (out-of-sample) information

with the likelihood (data).

The prior is obtain to be :

1

(τ 2j )
(rk(kj)

2

e
−1

2τ2
j

β
′
jkjβj

(τ 2j )−aj−1e

−bj
τ2
j
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Posterior:

∏
(θ) =

∏
(τ 2)

∏
(β/τ 2)L(β, γ, τ 2)

=
1

(τ 2j )
rk(kj)

2

e
−1

2τ2
j

β
′
jkjβj

(τ 2j )(−aj−1)e
−bj/τ

2
j

= exp[g0(t) +
1√

2Πτ 2
e
−1
2
(βj)

2

p∑
j=1

zij +
1√

2Πτ 2
e
−1

2τ2
(βj)

2

+
1√

2Πτ 2

e
−1

2τ2
(βspat)2 +

1√
2Πτ 2

e
−1

2τ2
(βgi)

2

].exp

∫ ti

0

exp(g0(u) +

p∑
j=1

gj(u)zij)du

4.8 R Code for Implementing Structured Ad-

ditive Regression Model

]] stepwise algorithm

]] generate some data

n← 1000

]] regressors

dat ← data.frame(x1 = runi + (n,−3, 3), x2 = runif(n) x3= runif(n,3,6),

x4= runif(n,0,1))

]] response

dat$y ← with(dat←, 1.5 + sin(x1) + 0.6 + x2 + rnorm(n, sd = 0.6)

]] estimate the model with STEP

b← bayesX(y ∼ sx(x1) + sx(x2) + sx(x3) + sx(x4),

method=”STEP”, algorithm= C descent1”, CI=”MCMC select”, iter =

10000,step=10, data=dat)

Summary (b)

plot(b)

]] a probit example

set.seed(111)

n← 1000

dat ← data.frame(x← runi(n,-3,3))

dat$z ←with (dat,sin(x)+rnorm(n))

dat $y ← rep(0,n)

dat$y[dat$z¿ 0] ← 1
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b ← bayesX (y ∼ sx(x), family = ”binomial probit”, data = dat)

Summary(b)

plot(b)

]] estimate varying coefficient models

set.seed(333)

n ← 1000

dat ←.frame(x=runif(n,-3,3),id= factor(rep(1:4,n/4))]

]] response

dat$ y ← with(dat,1.5+sin(x)∗ c(-1,0.2,1,5)[id]+rnorm(n,sd=0.6))

]] estimate model

b ← bayesX(y ∼ sx(x,by = id,center=TRUE),

method= ”REML”,data=dat)

summary(b)

plot(b,resid=TRUE,cex.resid=0.1)

]] End(Not run)

4.9 Model Estimation and Analysis

4.9.1 EXPLORATIVE DATA ANALYSIS

The study included 9211 vehicles with their age ranging from 2 to 39

years. The average of these vehicles was 11.21 years and a standard deviation

of 8.35 years. The standard deviation showed a wide variation in the ages

of vehicles considered. The hydrocarbon collected ranged from 0 to 19812

ppm with an average of 1500.84 ppm and standard deviation 2072.201 ppm.

Carbonmonoxide ranged from 0 to 14370 ppm with an average of 1487 ppm

(SD = 1678.9 ppm). Also, carbondioxide ranged from 0 to 13240 ppm with

an average of 7586.4 ppm (SD = 4652 ppm).

Over nine thousand respondents were seen, 30.6% of whom had asthma,

21.64% had pneumonia, 7.72% had bronchitis and 40.4% had cardiovascular

diseases.

Furthermore, 94.88% of the vehicle sampled ran on petrol while 5.12%

ran on diesel.

In addition, 52.40% vehicle seen were commercial vehicles while 47.60%
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were privately owned vehicles.

Finally, 53.56% of the vehicles were cars while 42.63% were buses and 3.81%

were categorized as other types of vehicles.

The data were subjected to explorative analysis and the behavior of

the various variables considered was shown. Box plot and histogram of the

various vehicular pollutants were shown and the plot of carbonmonoxide and

hydrocarbon revealed that there are a lot of outliers and extreme values,

which really attracted our attention because it shows that the people were

keenly affected by vehicular emission. Also, their distribution is positively

skewed, which implies that it could be modelled by many positively fitting

distributions. Other emission variables considered also showed that nonlin-

ear relationship exists among all the emission variables, since they follow a

nonlinear pattern in their distribution.
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4.9.2 The Model Estimation

The Geoadditive Bayesian Model is:

exp[g0(t) +
1√

2Πτ 2
e
−1
2
β2
jΣp

j=1zij +
1√

2Πτ 2
e
−1

2τ2
(βj)

2

+
1√

2Πτ 2j

e
−1

22
(βspat)2 +

1√
2Πτ 2j

e
−1

22
(βgi)

2

].exp

∫ ∞
0

exp(g0(u) + Σp
i=1gj(u)zij)du

where zij,gj, βspat and βj were non-linear time varying effect, linear time

varying effect, spatial effect, and random component, respectively.

The MCMC analysis is implemented with a burn-in period of 2000 iterations

and iterations of 12000. Thinning factor of 10 was specified which forces

BayesX to store only every 10th sampled parameter, leading to a random

sample of length 1200 for every parameter in our work. The model diagnos-

tic was based on the Deviance Information Criterion (DIC) given by DIC =

D(θ) + pD where D is the posterior mean of the deviance and pD is the

effective number of parameter (which is similar, but not equal, to degrees of

freedom) ( see Spiegelhalter et al.., 2002). The model with the lowest DIC

is considered best. Sensitivity to the choice of priors was investigated by

varying the priors for all the parameters.

The dependent variable is the Patient Outcome (rst). Results were ob-

tained for all the effect without the spatial effect. The original model pro-

posed by Hennerfeind et al. (2006) contains a spatial component which, in

turn helps to capture the spatial structure present in the relationship. How-

ever, in our analysis, we have not used the spatial component as there were

only four local government areas involved and they do not share a common

boundary, so it was difficult to get the spatial information. Effect Coding

was used to capture the spatial effect for the locations. In place of the spa-

tial effect, we employed the effect coding in our model using three of them

(namely Sagamu, Sango-Ota and Ijebu-Ode) with the fourth local govern-

ment, Abeokuta, used as reference .
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4.9.3 Fixed Linear Effect

A fixed effects model is a statistical model that represents the observed

quantities in terms of explanatory variables that are treated as if the quanti-

ties were non-random. Fixed effects are parameters associated with an entire

population or with certain repeated levels of experimental factors.

For the purpose of this work a diffuse prior was used for the fixed effect,

while the effect of the continuous covariates were modelled by cubic p-splines

with 20 equidistant knots and second order random walk penalty. Result for

the fixed effect model are presented in Tables 4 to 7. The posterior mean,

standard deviation and credible intervals are the comparison criteria.

The four models for the geoadditive Bayesian model are as follows:

(1) a = b =0.001, iterations = 12,000, burn-in = 2000, step = 10, n = 9211,

prior = diffuse prior

(2) a = b = 0.00001, iterations = 12,000, burn-in = 2000, step =10, n =

9211, prior = diffuse prior

(3) a =1, b = 0.005, iterations = 12,000, burn-in = 2000, step = 10, n

=9211, prior = diffuse prior

(4) a = 1, b = 0.00005, iterations = 12,000, burn-in = 2000, step = 10,

n=9211, prior = diffuse prior
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Table 1 gives results for the fixed effect for all the variables. The

output gives posterior means along with their standard deviation and 95%

credible intervals. From the table, we can observe that the number of visit

(nv),vehicle use (use),diagnosis (diag) and vehicle type(.i.e car) jointly de-

termine the health status of the child. Out of these, the effect of number of

visits (nv) is statistically significant which implies that the children tend to

visit the hospital more frequently with exposure to emitted pollutant and de-

preciation in their health status. This suggests that frequency of visit to the

hospital is an indicator of health effect of vehicular emission on an individual.

The table also shows that the effects of emission from cars are more likely

to affect the individual more than buses, although the effect is not statisti-

cally significant. This is because cars are more frequently used for commercial

purpose in the state than bus. Result for location of individual shows that,

compared with individuals who lived in Abeokuta, individual who resided

in Sagamu were more likely to be affected by emitted pollutants while those

from Sango and Ijebu Ode were less likely. However, none of these is statis-

tically significant. Keeping in view the fact that bigger towns tend to have

more relatively new vehicles, it is not conducive for better health status of in-

dividuals. But then, we may interpret that there seems to be a simultaneous

relationship with larger town,vehicular emission and effect on the children

living in the locality.
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Table 2 provides the results of the model for hyper prior with a=b=0.00001

reveals that the number of times the child visit the hospital, what the vehi-

cle is used for, the diagnosis made, and vehicle-type contributes to patients

outcome. The table shows similar results with table 2 except that the vehi-

cle used (in which both the effect of using car and bus) are significant even

though using a bus has negative relationship with health effect of vehicular

emission on individual. Also, fuel type(ft), though not statistically signifi-

cant, has a negative relationship with health effect of vehicular emission on

the individual.
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Table 3 also reveals that the number of time(s) the child visits the hos-

pital, what the vehicle is used for, the diagnosis made, and vehicle type

contributes to patients outcome.

Tables 3 and 4 show a similar result with number of visits (nv), vehi-

cle use (use), fuel type (ft), diagnosis (diag), type of vehicle (i.e car and bus)

jointly determine the health effect of vehicular emission on children. Out of

these, the effect of number of visits is statistically significant with number

of visits having the largest value,suggesting that frequency of visit to the

hospital is an indicator of health effect of vehicular emission on children.
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The various tables show that the fixed effects of all variables chose

different hyperprior value. The result gives posterior means and median

along with their standard deviations,standard errors and credible intervals.

From the table, we can observe that the number of visits, vehicle use and

diagnosis jointly contribute to outcome, which is ’dead’ or ’alive’; that is,

they have significant effect on the health of the child. Also, the posterior

standard deviation for all the factors considered are very small, indicating

that the fixed effects are not heavily skewed/tailed, which implied that they

are not largely spread out. This makes our knowledge about the parameter

to be precise. The small standard error for all the factors considered is an

indication that our posterior mean is a more accurate reflection of the actual

population.

From the research, using different hyper prior for the nonlinear effect,

the effect of age is significant only when the age of the vehicle is between

5 years and approximately 12 years. Also, the effects of carbonmonoxide,

carbondioxide and hydrocarbon are on the increase. The effect of CO is in-

creasing between 10100 and 14400ppm, while CO2 is increasing between 0

and 15000ppm and HC is increasing between 4953 and 19812 ppm. Using a

= 1, b= 0.00005, effect of age of vehicle is increasing between 7 years and

12 years, carbonmonoxide between 0 - 2500 ppm and 10800 and 14400, car-

bondioxide between 0 and 15 ppm and hydrocarbon between 5000 ppm and

19812 ppm.
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Figure 4.9: Posterior means of the nonlinear effect of age of vehicle and
carbonmonoxide and its 95% C.I
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Figure 4.10: Posterior means of the nonlinear effect of age of vehicle and
carbonmonoxide and its 95% C.I
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The overall mean age of vehicle was 11.21 years (SD = 8.35 years)

demonstrating a wide variation in age. For HC the overall mean was 1500.84

ppm and SD = 2072.28 ppm. For CO2 the overall mean was 7590 and SD =

4650 ppm demonstrating a wide variation in distribution of CO2, while the

overall mean for CO was 1490ppm and SD was 1680ppm.

The ages of the vehicle reach their peak at 39 years for the three years and the

flow of the ages of vehicles reached its minimum at 2 years. A high number

of vehicles fall within the ages of 23 and 39 years, and the frequency reduces

from 20 years to 16 years and picks a little at 17 years before dropping to

3 years. Rate of emission tends to increase with age of vehicle and lack of

maintenance.

Fig 4.9 and 4.10 presents the nonlinear effect of age of vehicle and car-

bonmonoxide in model 4.5.1 with 95% credible interval. The nonlinear effect

of age of vehicle and effect of carbonmonoxide was presented and the upper-

left plot suggests that health status of the child in a given period is asso-

ciated/significant with the age of the vehicle. The above results may be

explained as follows: As the age of vehicle increases the tendency to dis-

charge pollutant increases because of the depreciation in engine capability.

This is because majority of the cars tested for are as a result of lack of main-

tenance of the vehicle and ageing of the vehicle which makes the engine to

wear out. The right side also shows that the age of vehicle is significant to

the health status of the child but it remains constant because majority of the

old vehicles will be in the same state and as they get older they tend to be

taken off the road. This explains why the effect of age of vehicle is increasing

between 8 years and 12 years. The plot of the nonlinear effects shows that

patients outcome increases with increasing age of vehicle where there was

a sharp increase in the effect with the age of vehicle between 10 years and

12 years and that there was a steady and consistent increase in the health

effect afterward. A significant increase in the nonlinear effect was observed

for carbonmonoxide between 0 to 25000 ppm. Also, the plot suggests that

carbonmonoxide is constant except between 10800 and 14400 ppm, which

indicates incomplete combustion of fuel (i. e. there were vehicles that do

not have enough oxygen to fuel ratio at the point of combustion, suggesting

that most of the vehicles in these categories are old and are not properly
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Figure 4.11: Nonlinear effect of carbondioxide using cubic p-spline

maintained).
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Figure 4.12: Nonlinear effect of Hydrocarbon using cubic p-spline
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Fig 4.11 and 4.12 presents the nonlinear effect of carbondioxide and Hy-

drocarbon in model 4.5.1 with 95% credible interval. It was observed that

patients outcome tends to be increasing with increase in Hydrocarbon where

there was a significant increase between 4953 to 19812 ppm and there was a

steady and consistent decline in the effect on patients outcome. This implies

that patient outcome increased with every unit increase in emission rate of

hydrocarbon up until 19812 ppm before stabilizing. In case of carbondioxide,

the effect was almost the same at all levels. This indicated that either low

or on the high side, it was having a negative effect on the health of children.
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The variance components have similar magnitude, which suggests that

the unobservable heterogeneity between hospitals explains a portion of total

variation similar to that explained by the observable covariates. These results

suggest that the number of visits,type of vehicles used and diagnosis have

positive relationship with health effect (i.e. health outcome of children in a

given period of time). In contrast, the results suggest that the health effect of

a child is negatively related/associated with fuel type and type of vehicle.nv

(number of visit) has the largest value, suggesting that number of visits to

the hospital has larger effect on the health outcome of the child.
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The four nonlinear effects have significant effects on patient outcomes

having smooths with degrees of freedom ranging from 1.04 to 14.6. Also,

the smoothing parameters and variance components for the different choices

of hyperprior shows that the results vary. This implies that the results are

sensitive to the choice of hyperprior.
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Table 7 : Deviance Information Criteria using different hyper prior

hyper prior PD DIC

a=b=0.001 36.0419 9248.5205

a=b=0.00001 31.6236 9238.6967

a=1,b=0.005 36.1438 9253.375

a=1,b=0.00005 28.4879 9250.292
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Model diagnostics were based on the deviance information criterion (DIC)

Spiegelhalter et al 2002 given by DIC = D(θ) + pD,where D is the posterior

mean of the deviance, measuring how well a model fits the data.

According to Spiegelhalter et al (2002) DIC can be used to compare mod-

els. We first note that DIC is subject to Monte Carlo sampling error, since

it is a function of stochastic quantities generated under an MCMC sampling

scheme. In any case, a check on the different hyperprior using DIC shows

that the model is better improved with the choice of hyperprior a = b=

0.00001 with sample size of 9211 revealing the sensitivity of the model to the

choice of hyperprior. The model with lowest value is the best, which implies

that the choice of a = b =0.00001 has hyperprior performs better than when

we choose hyperprior of a = b= 0.001 and a =1, b = 0.005 and a =1, b=

0.00005.
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4.10 Model Performance

The performance of the model was checked using autocorrelation plot of 250

lag for the scale parameter, fixed effects and non linear effect and the result

of the plot shows convergence.

Convergence imply good mixing of parameters. Mixing refers to the degree

to which the Markov Chain explores the support of the posterior distribution.

Good mixing implies that the estimated models are not with highly correlated

variables.

MCMC often results in strong autocorrelation among samples that can

result in imprecise posterior inference. To circumvent this, it is useful to

thin the sample by only retaining every kth sample, where k is passed to the

sampler via the thin argument.

The result of the autocorrelation plot for the scale parameters in Figure 4.13

using Bayesian p-spline with second order random walk penalty showed a

good mixing properties with 12,000 iterations, 2000 burn-in, step =10 and

convergence at lag 250. The results of the autocorrelation plot for the fixed

effects, age of vehicle, carbonmonoxide and hydrocarbon were also shown

in Figure 4.14 to 4.17. The autocorrelation plot for the fixed effects, age of

vehicle, carbonmonoxide and hydrocarbon showed that the estimated models

are not with highly correlated variables and that the Markov Chain was able

to explore the support of the posterior distribution.
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Figure 4.13: Plot of the Scale Parameter showing minimum, mean and max-
imum autocorrelation function for the scale parameter
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Figure 4.14: Plot of the Fixed Effect showing the minimum, mean and max-
imum autocorrelation function.
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Fig 4.13 and 4.14 presents the nonlinear effect of carbon dioxide with

95% credible interval. The upper-left plot of fig 4.4 suggests that health

status of the child is associated/significant with the level of carbondioxide

being dispersed into the atmosphere. The above results may be explained as

follows: as the vehicle consumes more fuel it increases the amount of carbon

dioxide that is released into the atmosphere.

The right side also shows that carbondioxide is significant to health status

of the child but it remains constant because majority of the vehicles are not

efficient in their fuel consumption. This explains why most of the vehicles

tested exceeded the standard that was set for the state. The result for the

nonlinear effect of hydrocarbon with its 95% credible interval also shows that

the health status of the child is associated/ significant with effect of hydrocar-

bon. This may be explained as follows: the poor maintenance coupled with

the age of the vehicle gives rise to oil leakage into the combustion chamber

of the engines through the leaking end of the valve shafts and loose piston

rings. This explains why majority of the vehicles tested exceeded the stan-

dard set for the state, thus establishing the relationship between the effect

which emission has on the health of the children living in the neighbourhood.
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Figure 4.15: Plot of Age of Vehicle showing that a good behaviour of the
chain was obtained 107
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Figure 4.16: Plot of Carbonmonoxide showing convergence of parameters at
250 lag 108
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Figure 4.17: Plot of Hydrocarbon showing minimum, mean and maximum
autocorrelation function. 109
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Chapter 5

CONCLUSIONS AND
RECOMMENDATIONS

5.1 Introduction

In this chapter, we draw appropriate conclusions from the results ob-

tained, and indicate the contribution that has been made to knowledge. Ap-

propriate recommendations are also offered. In section 5.2, we present the

conclusions, in section 5.3 we present the contribution of the study. Section

5.4 present the recommendations.

5.2 Conclusion

The estimation of geoadditive model had been based on a large area as a

result of insufficient information in small areas. In the geoadditive Bayesian

model considered, a new random component was introduced and Bayesian

approach was used in the application using effect coding for the spatial effect.

The parameters considered were number of visits, age of vehicle, carbon-

dioxide, carbonmonoxide, hydrocarbon, vehicle type, vehicle use, diagnosis,

location and fuel type. The conclusions from the work are as follows.

The geoadditive Bayesian model constructed from the parent Geoad-

ditive model was able to combine the linear and nonlinear components of the

model and was able to assess the effects of vehicular emission on the children

living in the environment. The component of the geoadditive Bayesian model

was obtained using the concepts of finite difference and partial derivatives.

The nonlinear time-varying effect was modeled using a matrix representa-

tion. Also, cubic spline and the random nature in the distribution of prime
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numbers were used. The prior was obtained, and the random component is

distributed Gaussian βx ∼ N(0, τ 2b ). A conjugate prior was assigned on the

variance component τ 2 which is an inverse gamma prior with hyper parame-

ters a and b: τ 2 ∼ IG(a, b). The posterior was obtained from the prior and

the likelihood. An MCMC (Markov Chain Monte Carlo) simulation tech-

nique was used to draw samples from the posterior using BAYESX software.

From these samples, quantities such as posterior mean, posterior standard

deviation and quantiles (which, in turn, gives associated credible interval)

was estimated.

Using the Effect Coding for the location with different hyperprior, we

concluded that children living in Sagamu (posterior means = 0.0036, 0.0038,

0.0038 and 0.0033) were more affected by emitted pollutants than those from

Sango-Ota ( -0.0020, -0.0017, -0.0022 and -0.0026) and Ijebu-Ode ( -0.0148,

-0.0150, -0.0146 and -0.0132), especially when compared with individuals

living in Abeokuta.

The geoadditive Bayesian model using different hyperprior revealed

that vehicle use and vehicle type jointly determine the status of a child,

implying that they were indicators of health effect of vehicular emission on

individuals. These also determine the number of hospital visits and the

diagnosis made on these children (e.g. asthma, pneumonia, bronchitis and

cardiovascular diseases). The nonlinear effect of age of vehicle, carbonmonox-

ide, carbondioxide and hydrocarbon suggests that health status of the child

in a given period is associated with the emitted pollutants.

The use of a geoadditive Bayesian model was found to be suitable

for assessing the location effect on the health of the individual considered.

Moreover, even with limited spatial information geoadditive model was still

found to be applicable with good results using the Effect Coding with the

Bayesian approach.

The posterior was not in a closed form. An MCMC (Markov Chain Monte

Carlo) simulation technique was used to draw samples from the posterior

using BAYESX software.From these samples,quantities such as posterior

mean,posterior standard deviation and quantiles (which, in turn,gives as-

sociated credible interval) was estimated.
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5.3 Contributions of the Study

Geoadditive model has been applied in other areas using the longitude

and latitude for the spatial effect. In this study, we have been able to intro-

duce another method which is the use of effect coding for the spatial effect in-

stead of the previous use of longitude and latitude. The geoadditive Bayesian

model adopted from the parent geoadditive model is able to estimate small

areas with insufficient spatial information using Bayesian approach. It also

serves as an improvement on most of the shortcomings of other known re-

gression models. With this method, we are able to determine the location

effect of exhaust emission from vehicle on the individual considered.

The effect coding used in this study are particularly useful when small

district areas with no common boundaries are considered.

Our approach has been found suitable in combining the linear and

the nonlinear effect. Thus, it is more preferable to the previous methods

used by past researchers. Also, it has the advantage of reduced experimental

costs since it is not compulsory that a large number of areas be involved.

5.4 Recommendations

Exploratory analysis of the nonlinear effect shows that there are extreme

values in the data which indicate that the children in the locality are really

suffering from pollution. This is an area that can be explored in the future.

Also, the research only used some locality in one state; it (the work) can

be extended to cover the entire 36 states of Nigeria so as to explore the

efficiency of Geoadditive Bayesian Regression Model using the spatial effect

and compare it to the effect coding used in this work.
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Figure 5.1: Effect of Age of vehicle and Effect of Carbon monoxide
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Figure 5.2: Effect of Carbondioxide and Effect of hydrocarbon
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Figure 5.3: Effect of Age of vehicle and Effect of Carbon monoxide
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Figure 5.4: Effect of Carbondioxide and Effect of hydrocarbon
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Figure 5.5: Effect of Age of vehicle and Effect of Carbon monoxide
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Figure 5.6: Effect of Carbondioxide and Effect of hydrocarbon
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Figure 5.7: Kane Gas Analyser

Figure 5.8: A Moving Vehicle
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