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A3STR ACT

This thesis divides naturaUy into two parts. The first half
is a study of the general theory of multipliers, while the second
half deals with applications of the theory of multipliers to the
theory of semigroups of operators defined on a Banach sp-vee,

We study the multiplier problem for an abstract HiibOb*space H,
and generalise to H certain important result3 establii ha(g)-
multiplier3 (Larsen [12], Hewitt and Ross [8]). A”4 lilicant result
of this study is the Identification of certai» *p.je. cion operators
on L2(&) v/hich are, in several respects. Id&fzhe tr&nslation operators
on Ls(&). We also discuss the restric”S» nultiplier problem for the
Banach algebra Li(G] of all absolu/te>I)>/int prahle complex-valued
functions defined on a compact gj*up G, and we ebtain results v/hich
are analogous to tno3e obtctLnSii-'oy Brain”~rd ar.d Gdw-.rds [1] for Lj. (&),
where & is a locally compact abelian group.

In connection with,semigroups of orerators, we discuss, in the
context of various”™anach spaoes, the representation of the multipliers
which arise semigroups of operators on these Banach spaces. In
this respect, we extend the results jf Hille and Phillips [10] proved
for the eirole group (and generalised to compact abelian groups by

Olubummo A. and Babalola 7.A. [i3]) to certain Banach spaces v/hich are
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not even function spaces. All these results put toge 'eher provile a
jood link betv/een the theory of multipliers for a Banaci space and the

theory of semigroups of operators on the Banach space,.
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CHAFTER 1

INTEODUCXION

The theory of multipliers has its genesis in classical Fourier
series. Multipliers viere then referred to as factor sequenceja. We
get an insight into the issue of factor sequences by oxamining the
Situation for L~T), the Banach algebra, under the uoual®convolution,
of all absolutely integrable complex-valued function”™/defined on the
circle group T. The dual group of T is Z, the additive group of

integers. Now, every f e Li(T) has associated witn it an infinite

serxes
(1.1) N (n)en
n«Z N
called the Fourier series where for each neZ and teT,
en(t) =e”, and ~(n)~A~f(¢) -INt 4t The complex numbers
A,V . .
f(n) are called the Fourier coefficients of f. Let be a

1 neZ

sequenoe of oomplex numbers. G-iven an f e Li(T), whose xourier

series is giywat by we form a new infinite series
12 's =
(1-4) ly i'K

neZ

It may turn out that this new series is also the Fourier series of

some element g of Im..T), in which case we have

(1.3) g(n) = Xn £(n) (nez)
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If, given any f e L”~T), there alv/ays exists g e Li(T) such that
g(n) « XnE(n) for each nezZ, then the sequence (Xﬁ} is called a
factor sequence of type (Lj™T), It is clear tliat the sequenoe

with X8 =1 for each nezZ is trivially a factor sequence of
type (LAT), Li(T)). An interesting problem which jfcheu arises is to
determine necessary and sufficient conditions arbitrary
sequence [Xnl of complex numbers to be a factor Sequence of type
(1*(T), Li(T)), This is the so-called multiplier problem for the
Banach algebra LjXt). Of course ong”™”™\consider other spaces of
functions defined on T, and so define the factor sequence more
generally. Denote by C(T) the spaoe of all continuous complex-
valued functions on T, and. by L~(T), 1 « p < ® , the usual space
of all p-integrable complex-valued functions on T.
Let X, Y e [C(T), Lp(T); 1 $p <«,}. A sequenoe {Xn}neZ is called
a factor sequer type (X, Y) if to each ascX corresponds &
(unique) vy fA~ucn that y(n) = XRm(n) for all nez (Edwards
[4], HilA~liid Phillips [10] and Zygmund [20]).

snt trends in harmonic analysis show that the theory of

olassr'.cal Fourier series has it3 analogue for complex-valued functions
defined on compact abelian groups and even, to some extent, on still
more general groups (Rudin [14]). Let & be a compact abelian group,
and let Li(G) denote the Banach algebra, under the usual convolution

product , of all complex-valued functions on & which are absolutely
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in~egrable with respect to the Haar measure \ on G. Denote by G
the dual group of G. Por each f e L"G), the Pourier transform

- of f is defined by

ficr) = if(a) X~(a) d\(a)
&

rvhere Xer is written for the character e when we vfXzi* So consider
the latter as a function on G rather than as an element of B. W call
a complex-valued function 9 on G an (™ (G) - multiplier if

to eacn f in Lx(&) corresponds a (unique) g in Lt(G™ such that

(1.5) gtfo = $(<?) £(cr)

for each ere G. This extends to compact abelian groups, in a natural
way, the definition of an (Le Lj(t)) - multiplier stated earlier.
We also define an (X, Y;-~nultiplier, for X, Y e [c(C),LN&/; 1$p<¢«] ,
as a complex-valued fUS~tlon 9 on ?& suoh that to each xcX corresponds

a y eY satisfyjoig $(er) = $(<?) ec(cr), er e B.

The f are known about the (In(G), Lx(G))-multipliers
(we shall horeinafter refer to (!*(&), In.(&))-multipliers as
multipliers for Li(&), or simply L~G)-multipliers) provide a
motivation as well as a framework for studying the multipliers for
certain other topological spaces or linear spaces which may not even
be function spaces. for let < be an Li(g)-multiplier; then given

any f e Li(&), tnere exists g e Li(&), uniquely defined, such that
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g(<x) = #(cr) £(cr) for all cel Thus < gives rise to a mapping

, say, of L~G) into itself, defined by T~f = g. It is known that
any such operator on Lj.(G) is bounded, linear and conlnutes with
the translation operators on L~G), and that, in fact, "T®ry bounded
linear operator on L~G) wiiich commutes with translations is of the
form for some Lj.(G) - multiplier € This suggests that an
L.(G)-multiplier may be regarded as a bounded linear operator on L"G)
which commutes with translations. The multipliers for (g) , whether
as bounded linear operators on Lj.(g) or as oomplex-valued functions

A
on G, have been thoroughly investtigated by Wendel [19], Helson [7]

and Edwards [5]. Their results are all contained in the following

theorem ([12], Theorem 0.1.1):

1.1 Theorem: Let a locally compact abelian group and suppose
T : ~G) =>L"G) isSa bounded linear operator. Then the following
are equivalent:

(i) T commutes with translations

(ii) T(feg) =Tf * g for all f, g c L”~"G), i.e. T commutes with

convolution

(iii) There exists a unique function < defined on & such that
(Tf)A = <ff for each f e Lt(G).
(iv) There exists a measure p e M(g), the space of all bounded

regulédr Borei measures on G, such that (Tf)A = p£ for each

f € Li(&)(p here denotes the Fourier-Stieltjes transform of p).
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(v) T.iere exists (j.eu(&) such that Tf =ja* f for each f e Li(&).

A multiplier for L~G) is therefore defincd also as a bounded

lineai' operator T on Lj.(G) which sati3fies any one, and hence all, of
the flve characterisations given in the precedi ®.
i should be noted tliat if one wishes to st multipliers

for more general spaces, then certain of the defimxions usod for the
multipliers for L”~G) may no longer be meaningful and some may be
inore appropriate than othcrs. i'or example, if X is a Banach algebra,
then neither the ooncept of an operator which commutes with transla-
tions may be meaningful, nor, in the non-commutative case, is the
machinery of the Gelfand representation theory available, Piere it
seems natural to define a multiplier for X as a bounded linear operator
from X to X such that (Taa)y = x(Ty) for all x,y in X. If X is
commutative and aemi-simple, tiien we oould also define a multiplier

for X as a complex-valued function 4> on the reguldr maximal ideal

is aS4y~>ological linear space of functions on a locally compact
abelian group, then the definition of a multiplier as a bounded linear
operator which commutes with translations is evidently the most natural
one. In whatever context, one seeks characterisations of multipliers
similar to those established for Li(&) in Theorem 1.1. Larsen [12]

and Hewitt and Ross [8] contain very good accounts of the theory of
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multipliers in the context of abstract algebrasand topological linear
spaces of functions and measures. Larsen, in additicn, gives a list
of references ([12], p.15) where one can find the various applications
of the theory of multipliers in the theory of semigroups of operators,
in the study of partial differential equations, in the the~" of
stochastio processes, in tue theory of interpolation sj in the
general theory of Bana?h algebras. In ohaptcrs 4,5 and 6,
we also investigate a link betvreen the theory of multipliers and the
theory of semigroups of operators.

In our study of the multipliers for a Hilbert space H in uhapter
2, we use heavily the fact that a Hilbert space is a space vrith projec-
tion operators. We single out certain projections F. on closed sub-

projections play exactly the same

role as do the translat™“n*\perators in the case of the multipliers
for La(G). An important dcduction from this result is a new characte-
risation of the multipliers for L2(g), the Hilbert space of complex-
valued square-inregrable functions on a compact group G, as the bounded
linear operators on L2(G) wiiich commute with the projection operators
referrea”~J/» above. We furthermore prove separately, that, in fact,
a bounded linear operator on L2(G) commutes with translations if and
only if it commutes with these special projections. We characterise
the multipliers for H in another way. Let E be a complete orthonormal

set in H. A complex-valued function pon E is called a multiplier for
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H if <|A)(<rIA—| whenever a>H, where f\( denotes the Fourier transform
of x and 6 is the set of all Fourier transforms x , for acH.

We show that this definition of a multiplier for H is er, in

the sense that if we define an operator T from H to HdJjyj

(Taga = ¢ , a?»H, then the operator T is bounded, linear and commutes
with the projections We then show tliat every multiplier $ is
bounded, and that conversely, every bounded”~complex-valued function

on E is a multiplier for H. This last result extends quite naturally

the Situation in La(G-) ([12], Theorem 4.1.1).

In Chapter 3 we examine a variant of the multiplier problem,
raised by Edwards ([4], 1 (1)), namely the question of
restricted multipliors. We consider the Situation in Li(&), tlie
Banach algebra of all the absolutely integrable complex-valued
functions on an infinite compact group G. Denote by E the dual
object of G. The multiplier3 for Li(G) are operator-valued functions
on E , namely the Fourier-Stieltjes transforms of measures in M(G)j
for each (ieM(&) and , li(0" is an operator on some finite-dimen-
sional Hilbert space H . Let S be a subset of E; we call an
operator-valued function O on S a function of type (Li(&), Li(G), S)
if to each f c Li(&) corresponds at least one g e Li(g) satisfying
g(o-) = <ler) f(cr) for each creS. One such function is, trivially, the

function < suoh tliat for each e f E, $(<r) is the identity operator on
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H. . We then show that a necessary and sufficient condition for
an arbitrary function < to bc of type (li(G), Li(G), S) is that £
is the restriction to S of some Fourier-Stieltjes transform, i.e.
some restricted L*(G)-multiplier. Our result in this direction is
analogous to that establisned by Brainerd and Edwards [1] in the case

where G is a locally compact abelian group.

In Chapter Hwe discuss the multipliers for the Banach spaces

(i) AP(&), the space of all complex-valued almost periodic functions

on a locally compact abelian group G, (ii) an abstract Banach algebra A,
and (iii) an abstract Hilbert 3p~g k where these multipliers arise
from semigroups of opcrators defined on the Banach space being consi-
dered. In the case AP(g), we define a multiplier as a complex-valued
function on G (the chajacter group of G) such that <ff e AP(g)
whenever f e AP(G) ; in the case A, we define a multiplier as a
complex-valued function <> on £T) (the space of all regular maximal
ideals of A) such that dx e A whenever xeA j and in the case H

we define a multiplier as a complex-valued function 0 on E(a complete
orthonormal set in H) such that < e 6 whenever x e H. Let X
denote an arbitrary, but fixed, element of the set [AP(G), A, H], and
let 7 = (T(E£) : g > 0] be a one-parameter semigroup of operators on X
such that each opcrator T(g) determines an X-multiplier [7 is
called a semigroup of operators because the operators T($-), 2 > 0,
satisfy

(1.6) T(&+£2) = T(&) T(ga)
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for all 5t, > 0.] We show that the 3et $ = & : 5 > 0} is also

a 'semigroup’ of multipliers in the sense that

(1.7)

for all 5i> > 0. By imposing just the condition o ~ r measurabi-

lity on 7, we obtain an exponential representation :

that for fixcd c¢ € & (taking X = AP(&) for instance), we have

(1.8) ~(<r) =

# ot N
for some complex number and all This is a significant
representation of the multipliers in view of the nice properties

of the exponential function e of the complex variable z. We further-

more show that if, conversely, ye oonsider all the multipliers for
AP(&) which have the exponential representation (1.8), and associate

with them operators T(5), 5 > 0, on AP(&) defined by
(1.9) UQUTrTOr) = Mer) f(cr) (f e AP(G))

then the colledtion 7 = [T(5) : 5 > 0] is a semigroup of bounded

linear operators on AP(g) which commute with translations, and 7 is
continuous in the strong operator topology. In the case X = A or

X = H, Vrhere the setting is abstract, we establish analogous results.
We thus forge a link between the multipliers for a Banach spaoe, on

the one hand, and the 3emigroups of operators on that Banach space,

on the other hand. It appears that this link was observed for the
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first time by Hille and Phillips ([10], Theorems 20.3.1 ancl 20.3.2)
when they investigated semigroups of operators on C(-tc, k) and
LJ(-?t, 7t), 1 « p <® , the usual Banach spaces of complcx-valued
continuous functions and p-integrable funotions on the circle group.
Subsequently, their results liavc been generalised to compwrKpbelian
groups by Olubummo and Babalola [13], and quite recently, Professor
Olubummo in a paper er.titled 'Semigroups of multipliajrs associated
wriLth semigroups of operators 1 (to be published soonfextends to
arbitrary infinite compact not necessarily abelian groups the rcsults
in [13] proved for compact abelian groups! We also obtain, in
Chapter 5, a generalis?,tion of the results in [13] when wo consider
n-parameter semigroups of operators in place of the one-parameter
semigroups of operators used in [13].

In Chapter 6, we c”siuVr once more the operators ?(f-), £ > 0O,
of the form (1,9) abov”"Nsmere these operators are now defined on the
usual Banach spec | a _rlt_j_#,(G), 1 <p <<5 of complex-valued
continuous f«cU a,is and p-integrable functions on a compact abelian
group G. Our nmein interest here is to investigate the degree of
approximation of T(o), the identity operator, by the operators T(g),
for small values of the parameter We ahow that for semigroups
(T(g): £ > 0} of dass (1, C*), we have a first degree approximation

of f by T(g)f only if f is a fixed point for each operator T(g,, g > 0.

Hille and Phillips ([10], 20.6) have already investigated the

In Proc. Am. Math. 0Oc.



case where G is the circle group. Our result is then a generali-



CHAPTEH. 2

MULTIPLIERS FCR A HILBERT SPACE H

2.1 Preliminary Definitions

Lei H be an abstract Hilbert space. Then H is a oomplex
Banach space who3e norm arises frcm an inner produa*™ benote the
inner product of the vectors x andy in H by > The
following facts concerning the inner product are well known

([15]j chapter 10)

(i) <ex+ By, z>=a<Xx,z >+RB<y, z>

(2.1.1) ... (i) < < y>X >

(iii) > = |WP
for all x, y, z in Hana «<omplex numbers a, R. For sorae index
set I, let E = {en : ielj be a complete orthonormal set in H. E
may or may not be countable ; in faot E is countable if and only

if His separable ([15]* p.259). For each ajeH, the complex numbers

<r,e”™ > are called the Fourier coefficients of X, and the expression

(2. i X = Y< Xtex > ei
i
is called the Fourier series of X, with respect to E. We shall always

write the Fourier series of elements of H with respect to a fixed
complete orthonormal set E = [e”™ : iel]. Property (2.1.1) (iii) of

the inner product implies



r
(2.1.3) ldr = <a,e. >

for each ®eH.

A
Let xeH, and define a complex-valued function X on”Qjay setting
c(en™) = < x, > for each e™eE ; x is called the JPourier transform
of x. For x,y in H, we have x =y iff x(e”) =y(e”) for all

e.e E. The equation (2.1.3) is therefore equivalent to

(2.1.4) wa=V |S(edla
T ¢ |
for each ajcH. Denote by H the Set of all Fourier transforms X

where xeH.

2.1.1 Definition; Let & a Hilbert spaoe and let E be a complete
orthonormal 3et in H. Aomplex-valued function 9 on E is called a
multiplier for H, or simply an H-multiplier, if c¢oxeE whenever xeH.
Denote b~ I~MH) the set of all H-multiplier3. The above defini-
tion of aj”inNjft,ultiplier is of course a natural extension of the defini-
tion, ~tated in the introduction, of a multiplier for the Hilbert space

Ls(~) v rhere & is a compact abelian group,

2.2 Multipliers for H as bounded functions on E
In this section we snall characterise M(H) as the set of all

bounded complex-valued functions on E. This characterisation is well
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known in the case L2(&) ([12], Theorem 4.1.1). We start with some

definitions.

2.2.1 Definition: Denote by £E(E) the set of all complex-valued

functions f defined on E, satisfying
(i) the set {e”eE : f(e™) ™ 0] is either empty or countable, and

(a) V IfCeNl2 <»

These functions form a complex linear spaoe with respeot to point-
wise addition and scalar multiplication. In fact ([15]> p»260,

problem 8), 6a(E) is a Hilbert space if inner product is defined by

\Y/
(2.2.1) <f,g >

for all f, g e £2(E). HoV, for each meH, the set [e~eE: as(e™)™ 0}

is either empty or countable ([15], p.253)> and V j~e ™13 = || <@

a i
Hence for eaoh x e H, we have Xx e 63(E), and

(2.2.2) _ H®He2(E) = IWIh
Moreover ([15]> p.260, problera 9), the mapping X -* X is an isometric
isomorphism of H onto £2(E). It follows that H = £2(E).

We shall denote, also, by ~°(e) the linear space (under point-
wise addition and scalar multiplication) of bounded complex-valued

functions f on E, with sup norm



(2.2.3) ifll = sup [f(e.)]
X

It is clear that £a(E) is contained in £°°(E).

We now prove the main theorem of this section.

2,2.2 Theorem: Let Il be a Hilbert space and let
orthonormal set in H. Thon, m(h) is isomorphic/EV*
Proof: Let M(H) ; then <ceH for each a*K. As 6 = 62(e),

it follows that <€ 6a(E) for each accH.\ «Gbcversely, suppose <foef2(E)
for each xeH. Since 62(E) = fi, thi3 implies that for each
gdH, i.e. ff MMH). Thus 9 e Intjriff f S f ea(E) for each x e H.
We complete the proof of the theorem by showing that 9mc £2(e) for
each x eH iff <$e £"(E). Suppose <€£e ~°(E). For each xeH,
we have
V U(e.)S(e.)]» syiwcC 1*M)1* =IMb |W]a < -
i /Vy i
A acC
Hence px e £2(E). Conversely, let <% e 6~(e) for each aceH This
must imply that £ is bounded, i.e. E). For zf <€is not bounded

then to each positive integer n ccrresponds an eneE such that

|>en) 1 > n. We define a function 4 on E by

r—i— if ex = en n=1, 2, 3» eee
[O(en)l
¥=9 i | 0 if f
*
i ey * e, or any n
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for each e "eE. How, the set fe™eE : q(e”) ™ 0} is countable, by

the definition of q; furthermore,
1/2

in ' [4)) 1/2
. vl 1
Ilh U i)l
L [~en)] al
=1 n=1
a3 is a convergent series. It follows that g c 82(e).
L--
n=1

A
'‘As 62(E) = H, there exists x e H such that x(e”) = q(e?) for

each e~cE. Thus, if 9 is not bounded, then there exists xeH such

that x(en) = WJ%\ ei = e.f*

0
We then have

w 00

V. Wez) A@Gi)laOy ] ,X en)S(en)]» = £ 1

1 s \ . n=1

B >
Since \ 1 ishet divergent sei'ies, it follows that agcj £2(E).

n=1 ,< & . . .
Thus, our assumption that $ is not bounded gives rise to an xeH

for whd* e "~ M2(E) ; tliis contradicts Oxr 62(e) for all x €H.

Kence e°°(E).

2.3. Multipliers for H as onerators conmuting v/ith projections

LaCG) - multipliers have been ciiaracterized as bounded linear
operators on L2(G) which cormnute id.th translations ([12], Chapter 4).

One cannot directly extend this result to an abstract Hilbert space,
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since the notion of translation is not defined in an abstract
Hilbert space. However, in tiiis section, we define a certain
fatnily P of projections on closed subspaces of H and show that the
multipliers for H are precisely the bounied linear operator3 on H
wiiich comnute with every projection in 2. Our result provides, in
particular, a new characterisation of Lj(g) - multipliers, for a

compact group &

2.3»'l  Definition: Let E be the fixed corauTete orthonormal set in
2.2. For each e.c E, let denote tne closed subspace of H
generated by e. . that is, the closure of the set of all scalar
multiples of ei> and let Naote the projection on M.. Set
P=®™ i (ij. An operatpr T on H commutes with a projection

if T2~a?) = Pj~Tr) , 117 x in H. If T commutes with
every F. in P, ~“en we say T commutes with P.

We have the following lemmas:

2.3.2 lasat Kr each iel, let JL denote the orthogonal comple-
ment of and let P”™ be the projection on Mj_. An operator
T on & epommutes with P~ iff both and are invariant under T.

Proof: This lemma follows from combining the results of Theorem C

and Theorem E on p.275 of [15]e

2,3»3 Llenmma @ Let T be an operator on H which commutes with P. If

i, j ei and i Fj, then < Ten, TeN >= < TeN, ej >=<eN, Te > =0.
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Froof: Let i € 1. Since T commutes with P”», lemma 2.3.2
implies that M. is invariant under T. Hence [e., Te.] C M..
Similarly fe:], Tej} C NB for j £ 1, If i ~j, the orthogonality

of l\/% and M, implies that <Te|., Te

J J

> = <Te, > = <e,, Ta.> = 0.
J &% © ex"‘ﬁlj>o

2.3.4 lLemma: Let <£eM(H). The operator T : H VSIefiilrmed by
(2.3.1) (TE®)A = <X (® e H)
is linear, bounded and commutes with P,

Proof: Let x, y eK andlet a, B
[T(ar + By)]A = plcx + By)A = <£(a”k™4(By)
= apx + ppy = a(Tr)A + B(Ty) te [«Ta; + BTylA
By the uniqueness of the Papier transform, we have
T(@® + By) = al® + BTy. \ilence T is a linear operator on H.
To show that T is bounded, we apply the closed graph theorem
([15], p.238). Let [xn\  be a sequence in H 3uch that

im |® @] and lim [JTau - y]J] = 0 .
n-*00 n \\/ n-« 7

Iy - (y - TX)A‘H&(E) [by (2.2.2)]

= lly - (Ta)Allc2(£)

« H? - (M n)AdaE)+ 1I(1-»)A - (® »)'V (I)

=l(y - TAIB(BE)t [IM*n- x)]Alc2(e)

= lly - ERJI + KC™ - *)ape2E) by (2-2-2) and @*3-1)]
51y - ton]| + IMiJIOv *)All<a(E)

=lly - TxJI + IMIJIla™ - @] (by (2.2.2))
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Since $ c £°°(E), by Theorem 2.2.2, and both |ly - Txn;] and JX&3a]l
converge to zero, it follows tliat |y - T™x]] = 0. Hence y = Tx.

By the closed graph theorem, T is a bounded operator on H.

Finally we show/ that T commutes with every F. in bA i view
of lemma 2.3.2, it suffices to show that for each i ioth Mk
and I\/%( are invariant under T. Let i el.

< *al, 0. > = (Te.)A(e.) =

lienoe Te1 = $(e§<.)>§. , a scalar multiple \9f & for each e.g E.

Kow if xel\/{/, it is either x = a”e. SBor some scalar , or
X = lim x where each Xx Is u« sdalar multiple of e~ |If
= i i i i = .= . .= .d> .
X CRCRS then linearity of T |m1pI|es Tx Taxe.I Xct;’(e N ad,(le,)gz(
is a soalar multiple of e.vASimilarly. each Tx is a 3calar multiple
of ei« Hence, in the other case x = lim , continuity of T
implies Tx = T(limx = lim(Tx is the limit of a sequence of scalar
p g ( m 7 m(Tx ) q
multiples ofA 5ce is a closed subspace of H, it follows
that Tx £ ™ X e I\/{ That is,, I\/I, is invariant under T. Now

let y*c ~ ; then y(ei) = 0. Hence (Ty)A(e”) = 48 ) y(e”™) = 0.

The Fourier series of Ty then reduces to Ty = \ < Ty, e >
i i jfi
It follows tliat Ty ( . Hence is also invariant under T.

This concludes the proof of the lemma.
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2.3«<6 Definition: Let T be an operator on H, i.e. an operator
on H to itself. |If there exists d&e M(H) such that (Tm)A = gqA

for each x e H, then we shall call T a multiplier operator on H.

2.3.6 Lemma. Let T be a bounded linear operator on commutes
with P. There exists $ e M(h) such that

(i) (Tx)A = (fix for each xeH, and

(a) M\ =l .

Proof: Let T be a bounded linear operator on H which commutes

with P. We associate with T a coinplex-valued function ~ on E

defined by
(2.3.2) KB0 = Tei’' ei >
for each e.eE. Por eapi X = 'S <x, ek >e. e H and e~cE, we have
*
(Tcc)A(ei) = < Tx, >
=<T~"r< «, ek >ek , ex >

ek > Tek’ ei >

= V <je ok > < Tek, ex

k

= <X, eN > < Ten, > (by lemma 2.3.3)

Fife ) a%(g)



Thus for eaon cceH and e1 e E, we have

(2.3.3) (T®)A(ei) = vT(ex) x(et).

/_\A ~ .

Hence (,Tx) = for each xeH. As T is an gperator on.H,
Tx e K for each xeH. Therefore <% = (Ix)A e for e~gh xeH.

It follows that c M(II),

We show that |JoU]l = Jik]l- For each

N\ [(TepAed | (by (2.1.4))
u
5

elcE, ||Te1||2

I < Tv ej » o< 7

7 ;
I< TeX, ey > IS (by lemma 2.3.3)

Hence |V ei)l =111.7~,r?j\veach E. It follows that

KTIl = sup KT(ei)l
E

, < X ? e"E
= sup ilTe.ll
V E

« SUP I le.]
e.eE

Ty

(2.3.4) IW L < ilTl
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But
licll = sup |ie®l|
WH
1/2
su JV |(Tac)A(e.) |
HM ~Lj i1
»1/2
= W\W—I If_s W?(ei Ac:el)| [by (?.75)]
-
r Y8
WW' ] IHEIH ~ |~ (ei)] 2] E)by Theorem 2.2.2]
JPMI W
Wil 140
- IM .-
Hence
(2.3.5) w1 1i~N0i |-

(2.3.4) and (2.3.5) imply timt [icfl = IWJI~ .

Let us denote by Bp(,H) the set of all bounded linear operators
on H which. oomraute vvith P. Elements of Bp(H) are multiplier
operators on H, by lemma 2.3.6. Considering this fact along vrilth

Lemma 2.3.4 we have the follovfing theorem:

2.3.7 Theorem: Bp(H) is isometrically isomorphic to *(E).
Proof: By lemmas 2.3.4 and 2.3.6(i), the correspondence T

defined by

(2.3.5) ~MpER) —N " <V E>
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is an isomorphism of Bp(li)j onto M(H). But M(H) is isomorphic
to ™(E), by Theorem 2.2.2. [In fact, if M(h) is given the sup
norm, than Theorem 2.2.2 actually implies M(H) = <fa(E)]r \Hteuce

Bp(H) is isomorphic to 6°°(B).

Lemma 2 .3.6 (ii) nrovides the isometry.

2.4 Real-valued nultipliers and seif-adjoint operators

Every operator T on H gives ris6 to a unique operator T* on

H, called the adjoint of T, satisfying

(2.4.1) <Tjc, y > = Ty >

for all x andy in li ([15], section 57). T is called a seif-adjoint

operator on H if
(2.4.2) QM"Bx,y >=<x, Ty >

for all a;;y in H. Seif-adjoint operators on H are closely

linked vdth real numbers, as is evident in the following lemma:

2.4.1 Lemma; An operator T on His seif-adjoint iff for each a*H,
< Tm, X > is a real nuaber.
Ffroof; Tliis lemma is Theorem D, p.268 of [15]-
Denote by Bps(H) the subset of Bp(H) comprising the seif-adjoint
operators and by K~(H) tlie sub3et of M(H) consisting of the real-

valued functions. V& have the following theorem:
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2,4.2 Theorem: Bps(li) is Isomorphie to NL(h).

Proo:: As in tne proof of Theorem 2.3.7, every T e Bp(U)

corresponds to a e M(H), whnre "Vpe®) = < Te”, e™ > for each
e"eE. The proof vrill be completc if we show that T c¢ Bp(fl) is self-
adjoint iff is real-valued« If T is self-adjoint, then
lemma 2.4.1 implios that ~(e”~ =< Te”, ei >is real for each e”cE,

Conversely, if <ftp(e”) is real for each e”eE, then

for each x = \ <X, e. >e, e H,
L k k
<Tx, x > =<T MN<x, elec> VT e. >e. >
i N 1
m < N ' “m** 5 Tek> <X>ei >ei >
k 1
c s& S
~ ] <X, eM><<X, e" > Ten, n
N\ — o
= <x.e. ><X, e. ><Tei, ei > (lemma 2.3.3)
L 1 1
\% 1
= Vi<-. .,» |
3

is real, and by lemma 2.4.1 T is self-adjoint.
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2.5 MH:iplier cnerators of finite norm

The function space +Z(E) has been defined in 2,2,1. We denote
by 2 (e) the subspace of £2(E) consisting of real-valued functions
only. 62(e) and -&VYE) are subspaces of € (E), We show in this
section that s®2(e) and -6"E) are isometrically isomorphic to certain

well known subspaces of Bp(H).

2.5.1 Definition: Let T be a bounded linear operator on a Hilbert

space H. With T and two complete orthonormal sets Ei = R c Rl
and E2 - {ru : B e ftff we associate a numbex N(T; r]) defined by
(2.5.1) N(T; £, ) = , rfp ><ry >|

.a,iB J
M. H. Stone ([16], shows that N(T; rj) is independent of the
orthonormal sets to define it. Thus the number H(T) = N(T; g, 4)
is a characteristic of the operator T . T is said to have the norm
H(T), and”™”ulLs said to be of finite norm if N(T) <» . The norm

N(T) is different from the usual operator norm ||| defined in [15]>

p. 220. In fact, there are bounded linear operators on H whioh are
not of finite norm, for example the identity operator on H. The class 7
of all bounded linear operators on H whioh are of finite norm is closed
under the operations of scalar multiplication, addition, and formation

of the adjoint ([16], Theorem 2.31).
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Suppose in defining i'T(T), wre take EA = E2 = E, where

E =1]e. :iel}. From (2.5.1) we shall have
172 172
N(T) = <Te., e. ><e., Te. >
"Lij 1 J J X
Wi, j *>
If T commutes with P, then < Te? eN >=0 f°r iti ( lemma

2.3.3), and so

(2.5.2) n(t) = Y < Tet, ei >]2(

L

IT 7 is given the norm N(T), thi~“>»e have the following theorem:

2.5*2 Theorem: 6a(E) is isomctrically isomorphic to the subspace of
3p(H) comprising operato™*vifhich are of finite norm.

Proof: By Theorem 2.3.7 tliere is an isoraorphism of Bp(H) onto
6°e). Let T e Bp(H”correspond to <p e -(“(e) under the isomorphism;
then <4p(e?) = < Te™> > for each ei ¢ E. The operator T is of

finite norm iff e £2(e), sinoe
\1/2

N(TfV JV]|< Te., e. >]2,
L,
L i - i
2.5*3 CoroHary ££(E) is isometrically isomorphic to the subspace
of Bp(H) comprising operators which are of finite norm and are self-

adjoint.

Proof: We combine the results of Theorem 2.5.2 and lemma 2.4.2 ,



2.6. The case H = L2(G)

Let G be a compact abelian group and let Ls(&) denote as
usual the Banach space of all (equivalence classes of) complex-valued
measurable functions on G which are square-integrable with respect to

the Haar neasure X on G. With inner produot defined b.
(2.6.1) < e >="jf(d) g0 <3x@)

for all f, g ( La(&), L2(&) is a Hilbert sptace. Denote by G
the character group of G. For the sake of clarity, we siiall alvrays
reite X~ for a continuous character*fi*sj& when it is oonaidered as a

function on G, and e for the sam acter when it is consiGered

as an element of the character group G

G is a complete orthonormal set in LzCGj,. and so every f e L2(G)

has a convergent Fouriur sdries

(2.6.2) f=J

where f, the&Fourier t;\ansform of f, is defined by
(2.6. fcr) = j f(o) X~a) dx(a)

for each o-e &
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For each ere G, we denote by the closed subspace of L2(G)
generated by and by P the projection on M\ An operator T
on L2(&) commutes with P iff M and M_ are invariant under T

<T < er
(lemma 2-3.2 in the case Il = L2(g)).

Let f e L2(G) and let aeG. The translate of f bjf a, denoted

f , is the function on G defined by
(2.6.4) f (cc) = f(xa)
for all a?%G. Translations f *f (as well as projections P ) are

0

bounded linear operators on L2(g). An operator T on L2(g) commutes
with translations iff TfQ = (Tf)a for all f e L2(g) and all aeG.

We have the following theorem:

2.6.1 Theorem Let G be a compaot abelian group with character group

B, and let T be a bounded linear operator on L2(&). Then T commutes

a
“rith translations iff T commutes with each projection P , ¢ e G,

Proof: T commutes with translations. Then ([12], Theorem

4.1.1) there exist3 4 e £'(&) such that (Tf)A = <f fOr each

f e La(G). Let aO be an arbitrary but fixed element of G. We show

that T commutes with PN . Now, for any f . y W ) xc XN
i
d a

L2(g), we have PO{l = f(crO)qu. Thus, for each «& , f f La(G),

we have



%

CO(Tf)~jA(<r) « NTFHA(Cro)Xocj A((r) = (T f)y~ )y~ ) =

&) f(c0)  if @ =d

’ S :

and

€Cp,/)] (En = [B(F(ffo)xfi/ ]V ) = HVM ™ a nrtfiM *W o tfaow
flcom 7 if e=a0

iX ea* g >

since $C(ger) = 1 er O according a0 or not.

It follows that for each f e Ls we have

LP (Tf) M = T(PT) for each e e G. By the
ao .

uniquencss of the Pourier transform,

PffCTf) = Kp/ )~ for each f e L2(g)

Hence T cc eff» with PC. As a0 was arbitrarily picked from
q

among the elei of t , it follows that T commutes with Per for

each ~\F

sversely suppose T commutes with P~, for each er e G, then

and are both invariant under T, for each ere G In parti-
cular TXer e l\/(I: for creG . So, either
(2.6.5) V- ar K

for some complex number a(c), or
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(2.6.6) X = lim (a (cr)Xj,

n->»

a limit, in the sense of L2(&)- norm, af a sequence (a”erjx”.} of

scalar multiples of X . Let aG and f e L2(&) be atbitrary.
MaoT(n (ax =TP w(a =T A e
a A
= y f(cr) JIWC) Ko. . That i3, N
* X >
(2.6.7) Tfc =V ~0-) x
* S )
for all a<G, f e L2(g). If TX~ is of the form (2.6.5), then

we have from (2,6.7) the following chain of equalities

Tfa = n *7°)
er e
= N E(<r)k(<#M)a = ~"N(o-)a(er)X”™a
er "oer

( Ierfw Se) e o

If TX~ is of the form (2.6.6), we similarly have

Tfa = p(o-) ys) T™a = V f(er) y s ) lim(an(cr)xp
er er
= Vifcr) lim [aJcrKXAJ = p W lim «n(<n)(X ~
L-cr .

AP?2W U «.n(, A = (V = (Tfjo.



In either case, Tf = (Tf) . Hence T commutes v/ith translations.

We now consider Theorem 2.6.1 in the oase where G is a compact,
not necessarily abelian, group. In definitions and notatioi™s, we
follow Hewitt and Ross [8], where any undefined terms concerning
harmonic analysis on compact non-abelian groups, used in this section,
will be i’ound.

Let G be an infinite compact (not necessarily abelian) group
with dual object £ , and let L2(G) denote, as before, the Hilbert
space of complex-valued measurable functions on G which are square-
integrable v/ith respect to the Haar measure X on G. i%r each < e E,
let the representation u v er have the representation space H ,

and let d be the (fiimite] dimension of the Hilbert space H

I?urther, let

X A
(2.6.8) ... ed

be a fixed (but arlbitrarily chosen) orthonormal basis in H .

Coordind .qu¥at®ns ufo) for j, k=1, 2, ... , d™, are defined
on G
(2.6.9) = < Uerv 'T), > .

In this same basis, the U_’iﬁy”s are coordinate functions for the
conjugate representation e ([8], (27.28)). The set
i

ieflL, jyk =1, 2, ..., d*} is a complete orthonormal set
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in L8(&), and for each f e L2(&), we have

(2.6,10) fo= \ d <f, UJdJd>
L L -a Jk Jk
oeS j k=l

where

(2.6,11) < > x / =jk)f

and the series in (2.6.10) converges in L2(&)-#n. Por felLa(G,)),

let £(cr) be the operator on H defined by

(2.6.12) < ECCNE, rn >=J < T >f(*) ™x(x)

for all g, t) ( HN. Benote b the set of all bounded linear

operators on HA. The lution algebra P B(H ) is denoted by
cref

) (I81, (28.24)). $(E), soalar multiplioation, addition,

multiplioation, and the adjoint of an element are defined coordinate-

wise. Let E » (E”) be an element of $(e). For 1 « p <», we
define

"V P
(2.6 7~ INI. /\ d [k Il

U *

Co-eE
and
(2.6.14) |h|lD = suptIIEOII% (T6E 1
wnere are the operator norms of [8], (D.37) and (D.36.e),

For 1 « p « |P(e) is defined as the set of all E e (Ele) for



-g('j-

ttlich JHl < ® e Since & is compact, La(&) is contained in M(g),
r
the set of all bounded reguldr complex-valued Borei measures on G,
It follows from (28.36) of [8] that £ c @ (E) for each f e L2(g).
Following [8], (28.35), we shall use a fixed collection (IPO': crE}
of representations, picking one from eaoh equivalencc class aeZ, so
A ] . . SysS .
that f, defined by (2.6.12), is fixed for each f & L2(g). i“rom

(2.6.11) wre then have

r, a\(x) =<? ( 0 > .

Thus for eaoh f e La(&), we have

(2.6.15) f o~ } d”~”~o-)n, zff) >, W
)i__l i A K 0 ik
a<t j.
For aeE , let M denote the closed subspace of L2(g)
generated by the D,k =1, 2, ..., d*J, i.e. the closure

of the set of all finite complex linear combination3 of coordinate

funcwons” Mr " Xcrog- (27-79)). —Denste by P the
projecl on M [These definitions of P and M reduce to the
def mmemlons given earlier for P~ and M if G is abelian, sinoe

then d~ =1 for each e eE]. For each ff ( E, P is a bounded

r*.
linear operator on L2(g); thus for f =\ dan <
aeE j,k=1

in La(&), we have

(2.6.16) Pt

j k=1
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2.6.2 : lemma Let f e L2(G) and let Ob be arbitrary but fixed
in E. Then, for each cE, we have
(2.6.17) (P.§) Alr) = I'(6'0) if < =00
if <r”~o
Proof: Let (Ig, ercS 'oe as in the lemma. By the orthogonality

relations for coordinate functions ([9], (27.15)), (u”~°;)A(cr) = 0

if e ~a0. Hence, if f f L3(g),

- Vv ' ¢
m Voa,/ HH > >&o0)” (er) [using(2.6.16)]
U
J
£V
JC . & L] EEn n
< > 5jT°~ > (UjJON)AC0) if <=o00

J f) if e ~ob
V/ 1:(a'o) if =40

if o~

2.6.3 lLemma: Let ~(Hj.) be the set of all bounded linear operators
on H . Then

BH) = [f(o-) : f e/ (GJ

for eaoh er ez W k=1
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Proof: This lemna is Theorem (28.39) (i) of [8],

2.6.4 Definition: Let f c L2(&) and let a e G. The right-

translate of f by a, denoted f , is the function on & defined
by

(2.6.18) fau) = f(a») o T

for eaoh x e & Similarly we define f , the left-tr&nslate

of f, by

(2.6.19) f(s)) = f(aa;)

for each xcG.

We shall henceforth consider right-translations only, in our
lemmas and theorems, since it is clear that analogous statements

can be made if left-tran3lations are also considered. Of course

if & is abelian, then left-translation is the same as riglit-

translation. (/ «.

2.6.5 Lemma: Let ac& and let f e L2(g). Then

(forw - 5(0)

irroof: For all t) eH

< A> = < U), 4>

= J <gio)(0™Mk), n > f(x)d\(x)
X o-1



i< M >fo(») dX(®)

« < (fa)ACen5, n >
Hence (fa)A(cr) = £(cnTjj~e f for each e c2Z.

Using this lemma and (2.6.15), \\/Xg have

(2.6.21) _ :/:Uf>>«§s’)

(7ez

2.6.5 Lemma: Let G be a compact group with dual object Z, and let
T be a bounded linear operator on L2(g) which commutes with riglit-
translations, i.e. Tf = (Tf)a for all ae G and f e L2(G).

3 E€(¢ (Z) such that for each f € Ls(G), we have

(2.6.22) (Tf)A(cr) = sjc(-<r)

for all e eZ

Proof: Since G is compact, L2(&) is a Banach algebra under

convolution < , where

(2.6.25) (f = g)(cc) =T flay_1)g(y)dX(y)
G



- Mf -

for all x ¢ G and f, g c Ls(G). Thus if T is an operator on
L2(g), then feg, Tf* g and T (f. g) all belong to La(&) for all

f, g e La(&). Now, for any h e La(G),
<Tf. g, h> = |(Tf. B)(xX) h(a;) dX(oc)
Ja <f£~

= J  J(T?)(xy Dg(y)dx(y) h(x) dX()
S a

@ J(Tf)y-*U) hU) ax(*)j |By Fubi®i [8],]

= Jg(y) < (THy-i , h > dx(y)

: a t

= S(Y) <Tf-ir > ®NY) [ T commutes with right-

G translations ]

= f g(y) <£&y-x, T'h > dx(y)
i

= Je(y) J?-i(x) (T*hx®) dx(*)]ax(y)

, If(cey-1)g(y)d X (y)l (T*hM*) dX(jc) (By I'ubini)

N G 6
= J(f-B)(») (T*h)() dX(@a;)

= <feg, rh >

= <T(f.g), h>

Hence T (f* g) = Tfeg for all f, g in L2(g).
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We associate vrith T an operator-valued function E : £ -»($(£)
defined in the following way. Let ereZ, by lemma 2.6.3 there
exists e &) such that e™Xer) = , the identity operator

on H” Ve define BN , the value of E at er, by
(2.6.2%)

Observe that for each u”~e”™_(G). (u ™ )A(cr) =

implies that u\» = 80-* ne* °g be arbitrary but fixed

in Z. For each < e Z, we have

("ko)AC) = [(=<= =(Tv 0" 4? PAm)

« (Te )y(0-~70))A@G-) = IB® Uk °~MAcro) ** ~ =~
0 J 0 iTcr~o

since (u”~O0MA(cr) =0 if <~ ob. That is,

(2.6.25) (Tu”o))Acr) = | SaO(ujk °~ A(cro) if er=a0
if e £ a0
for all oi( B and j, k=1, 2, .. @ Let f c L2(g), and
let a0 be arbitrary but fixed in Z
«ST , _
Tf N )
( 4a) > tuf } (<r0)
eeE  j, k=1
£ £ *r < 5W > (TuW )Vo)

ecE j,k=1



*
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<\o
- | ~ o [by )6
Jj'ssl
- NVE
o y dmo < 4 ffo) > (u vV 'O
j,k=1
= Gf0-0)-
Hence (T f)A(er0) = anf(erO) for all f e L2(*S As aQ could be

/
any element of £, it follows that (Tf) (er) :SE f (er) for all
f ¢ L2(G) and all ere £. This implies that (Tf)A = e£ for all

f e Lj(l}), As the rdnge of T is «*ontained in 13(&), we have

E? = (Tf)A e L2(G) , for each 2(&). E is therefore an L2(g)-
multiplier in the senso of Hewitt and Ross [8], (35.1). It follows
([8], (35.16) (g)) that. (E).

This concludes the proof of the lemma.

2.6.6 Theorem: Let G be a compact group with dual object E, and
let T be a bounded linear operator on L2(g). T commutes with
right-translations iff T commutes with the projoction P , for
each c¢' <€£.

Proof: Suppose T commutes with right-translations. 13y
lemma 2.6.5, there exists E e (| (E) such that (Tf)A = Ef for each
f e L2(g). We shov; that T commutes with P  for each e e £. As in
the proof of Lemma 2.6.5, let a0 be fixed (but arbitrary in E), and

let f e La(G).

C <
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o- Oo (by lemma 2.6.2)
L if < +<r0
(T f)A(crO) if er=4a0
v. 0 if «<*ob /X3

; I * > $ IF
T 2.6.2
L «To( ) (ar) (lenuna )

for each er e L, By the uniqueness of the Fourier transform, we have
T(PNE) = PATf). Hence T commutes with PN . It follows that T

commutes with P_ for each ere 1

Conversely, suppose T ~gpmutes with P~ for each erf E. Then
My is invariant under T, for each e c E. In particular, Tu:® «

for each coordinate function u” €"(G-)= Therefore, either

(2.6.26)
r,s=1
for some complex numbers a(<r) r, s-1j 2, e, d or
rs e
(2.8, Tu?/ = lim u
« n n

where limit is taken in the sen3e of L2(&) - norm, and each u, is

of the form (2.6.26), say

r,s=1



r Ial'k'
N f =L L d" <Aa'1)A01)I " >lj m CLd&*
CTe2 i,m=1
Vv
Tf = £ vovo <5495 60T > Tl
creS i,m=l
£ £ #-< sI0" >4 f <)

creS i,m,r,s=1

N £ 47 < 4 41f) >1174In4r ; u <2-6-2
creE  i,m,r,s=1
Since < \ a '&sk ([8], (27.19)), it follows
that for each creS, and j, ke {1, 2, ..., d}, we have
-*r
vi &musfM >(1g 5 it (2.6.26)
\i,m?l
<«, «W>(I X~
n n “ (2-6-27)
That is, for €aeh coe2, and j,k {1, 2, ..., d~J, we have

< f(<r)4<j4 <r)> “jk} ** C~.6.26)

i,m=1
d

i< 4Nt ebT

(Cim=1

(2.6.29) < (T fIV ), €/~> =

It follows thatd for a e G and f e L2(&), we have

r—\
* _x f P\, < [by (2.6.21)]

ceZ  j,k=1
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= A n >T>) .
\Y Vder < f(er) a , z,ﬁe ik (T bounded and linear)
aekE j k=1
, _ N
\ VL <?(<r)(U~rkW), BW > if (2.6.26)
aeE j,k,r,s=1
Jda < 2-6-2?)

<eE | ,k,r,s=1

£ ][> < 41 > 47w * (2-6,26)
acE i,m,j,k=1

| 2> < AES 4K (2-6-27)
ocE i,m,j,k=1

n V dr<(TfAcr)»n), n [by (2.6.29)]
e j,k=1

= V* A . . M
eeE j k=1

= (Tf)

i.e. T~ = (Tf)Q for all oe& and all f e La(&). Hence T

commutes with right-translations.
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CHAPTKR 3

RESTRICTED MULTIPLIERS FOR Lt (&)

3.1 Preliminaries

Vfe now turn our attention to the problem raised by Edwards [4],
16.7*5 concerning restricted multipliers. Lot G be an infinite
compact, not necessarily abelian, group with dual object £, and let
Lji(g) denote as usual the Banach algebra of all absolutely ir.tegrable
complex-valued functions on G. As was indicated in the introduction,
the Lj(g)- multipliers are precisely the Fourier-Stieltjes transforms
of measures in M(&) ([8], (35*9), v/here for each (j.eM(G) and <J&,]i(<r)

is an operator (rather than a complex number) on the finite-dimensional

Hilbert apace defined in 6S Let B~”™.) be the set of all bounded
linear operators on and, as in 2.6, let (f(E) be the operator
algebra P B(H ). Por a given subset S of Z, we form the subalgebra
o
4(s) = PBH ) g°? where the norms in (j)(S) are simply the
o-4

norm3 Ml . 1 €p <<, of $(E), restricted to S([8], (35.6)).

3.1.1 Definition: An E = (EM) in (jI(S) is called a function of type
(Li(G), Lx(G), S) if to each f e Li(G) corresponds at least one

g e Li(&) such that

(3.1.1) go-) = E £(cr)
for each er € S.

Of course, for X, Y e [C(G), Lr(&); 1« p <°°, one can
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similarly dcfine E to bc a function of type (X, Y, S) if to each
X ¢ X corresponds at least one y e Y satisfying y(cr) = E® 5(0"),

o ( S.

3.1.2 Remark: It is clear that an Lj.(&)- multiplier, or its
restriction to S, is a function of type (Lj.(&), Lj(g), S) for any
subset S of Z. |In fact, thc original multiplier problem for Lj.(G)
corresponds oxactly to the case in whioh S =£. The non-trivial
problem i3 in deciding whother, conversely, >~ve” function of type
(I*i(G), Lj.(G), S) is the restriotion to S of some Lj(g)-multiplier.
This problem has been solved in the*Qaa”™< where G is a looally compact
abelian group by Brained and Edwards ([1], Part Il, Theorem 3*3).

In this chapter, we propose to solve the problem for the case where

G is a compact, but not necessarily abelian, group.

3.2. Restrictcd Lj.(&)«- multipliers
Let G be da infinite compact group with dual objcot £, and let
M(&) denote the Banach algebra of all boundcd regular Borei measures

on & Eor (i e M& and er e S, p(cr) is defined by

(3.2H2) <ECcrnE, E>=1I<~ 5 | T >dp(a)
g
for all € , 1eH . 3y [8], (28.36), £ e $ (E) for each peM(&).

Let X denote the Haar measure on & If p e M(&) is absolutely

continuous with respect to X so that d(i =f d X for some feLi(G),
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A A A
we write f for (. and call f the Fourier transform of f. Thus

(3.2.2) <?(<nE, T>=1< T > f(u)aX(a)
TJ
for all g, rle and f c Li(&). If }ieM(G) and f we

define ji* f, the convolution of p and f, by

(3*2.3) (n* f)(o) = [f(ax~t)d™(x)
for each a e G. By [8], (20.5), fi*f c for a®l  (I*1I(&) and
f ¢ Lx(G).

tfe shall need the following lemmas:

3.21 lLemma: If 3 s a functiofc of type (L*"G), L1(G), S), then

E is bounded, i.e. El <Ad .

Proof: Suppose that 3,, is not bounded, i.e. IEl = supllEjlj is
‘ ® oS

not finite. Then for any number m, however large, there is a

o' c S such tha jl. >m Let t e Li(&) be such that ~(o")
m

is the identity operator on ([8], Theorem (28.39)(i))j then
m

A,
E t(cr . Now, since E is of type (Lt(G), L1(G), S),

m m

ther« will exist g f LjXg) such that g(cr) = BN t(o") for all

ere S. In particular, crng E &cr ) = Et:r and so,

m
I« IS0 =1 IL
6 - >n for any number m. This is
@ m @

impossible, since by [8] Theorem (28.36)(i), g e $ (2). Henoe

E is bounded.
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3.2.2 Lemma For o0eG and f e I>l.(&), denote by f the right-

translate of f by ae&. Then,
(3.2.4)
for each c¢ e E.

Froof: The proof of this lemma is the same as the proof of lemma
2.6.5. n

We shall require a property (c) defined in [1], Part I,
Definition 2.8.1. Let G be a compact grovrp, and let JO be a
closed subspace of L~G). JO is 3aid to satisfy condition (c)
if whenever fj ] is a norm-bounded directed family of elements of

JO such that Ilim j =j fq/ me topology cr(L-~G), CO(G)), then
j e JO0. [Here, ftt(m(g), C(&)) denotes the weak topology on M(&),
viewed as the space of continuou3 linear functionals on C(g)
d13, p. 291).] Brainerd and Edwards show that ([1], p.303) if G
is compact and JO is a closed subspace of Lj.(G) such that

Li(6) . Jo c- Ss/ then JO satisfies condition (C). In view of this,

we hav  h .:following lemma:

3.2,3 Lemma: Let G be a compact group with dual object 2, and
let S be a subset of 2. Define J = [feLi(G): f(<r) = O for each
0“f S), Then J satisfies condition (C).

Proof: Since G is compact, we only need to show that J is a closed

subspace of L;I(G) satisfying LjXg)* J CJ . It is clear that J is
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a subspace of ~(G), Let fj j be a sequence in J such that
I~ -j|L:L =0 for some j e Lx(&). We show that j ( J. For
n 'n

each o0 e S, we have

[ljaynsH ) = IB(B") - Ga(allb(h ) (since on(o*) = Oj £
=14 - 1) Anil, m .5 & i
«lid - jJll. (81, (28.:

0 - Oy ([8]. (28.36))

Since Iirr]n Wi - jn||1 = 0, it follows that j(cr) = O for each s ( S.
Hence j cJ. Thismeans thatclosed. Finally, let feLi(G)
and j e J be arbitrary. For e o-e S, (fej)Alr) = £(cr)jcr)= 0

A
since j(cr) = 0. It follows that f, j e J, Hence !*(&) «JC J.

Now, let J b~"~"in lemma 3*2.3. We form the quotient space
Li(G)/j in the usual manner. Denote by [f] the coset modulo J of
the element f f L~G), i.e. [f] = [f + ] : ] « J}. For [f],[gAL"G)/.
and complex number a, define
[fl + Bl = +4l
vV ? »[fi = [»fi.
and define norm in Lj.(G)/j by
HEAI = inflIf + jlI
Since J is closed, Lx(Gr)/j is a Banach space. We define right-

translation in L*(G)/j by
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[fl =[ge I"(G) : gelfl)

ror all aeG and [fle LjC-)/~. This is well-defined, as the next

lemma shows.
3.2.4 lemma Let [f] e Li(g)/t and let aeG. Then

[f] < [f ]
; > < $\

Proof: We show that g e [r;]a if and only if [fa]. Suppose

g «[f]Q; then g = (f + j)a far some j ¢ J, By lemma 3.2.2,
(jr)A(cr) = j(cr) . Since j(cr) "A~for each ere S, It follows
that (j )A(c) = 0 for each <Te S, implying j eJ for each aeG.

In short, J is invariant under r(igtﬁtr-translatior?s. Thus

=(f +j)a =fa + ia = + for some j'*J, i.e. g=f + J7.
Thi3 implies g e [fg] ~

Conversely, suppose ¢ e[f(l]; then g = f(l +0" for some j"

in J. Now, garC prQ + j'Oa-i = (f0)a-1 + (IMa-i = f + ~-4= f+J"*

for some j. by the invariance of J wunder right-translations.

1Sy,

of the lemma.

Hence, = (f +j" 1)a e [f]a . This completes the proof

Thus, for each aeG, the mapping [f] -’l[f]Cb of Ll(g)/ﬁ into
itself is well-defined. im operator T : Li(G) -* L+(g)/j is said to
commute vd.th right-translations if Tffl = (TH)~ f°r all a€& an®
f e LNG).

The next lemma is a consequence of [1], Part I, Theorem 2.9.
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3.2.5 Lemma Let S be a subset of £, and let
J=[f e Li(&): £(<r) = 0 for each e e Sj. If T : L1(g) *(&)/.
is a continuous linear operator commuting with right-translations, then

there exists JaeM& such that

(3.2.5) Tf = [p.f]

for each f e LjXG).

Froof: By lemma 3.2.3, JCJ a

The theorem now follows from [1], Part I, Theorem 2.9.

We are now in a position to prove the main theorem.

3.2.6 Theorem: Let G be a compact group with dual object E, and
let S be a subset of £. >B& element E of (f(S) is a function of

type (L*"G), L~"G), S)T and only if there exists peM(G) such that

(3.2.6) * Sw

for each e e

Proof: Giten”~i CE, we define

J =[f e L£(G) : f(cr) = 0 for all o e Sj
and the quotient space ~(G)/”~ as above. Suppose E is a
function of type (L"G), L~G), S). We associate with E an operator
T : Li(G) mL+(g)/j defined as follows. Let f e L~"G); there exists
g e Lt(&) such that g(<r) = BN £(<r) for each creS. We define

Tf = [g], and check immediately that T is well-defined. Let
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gi, 62 e Lt(&) be such that Tf =[gjJ and Tf =[g2]. This
implies gi(cr) = E f(<x) = g2(cr) for each e f S. Hence

(gi - ga)Acr) = 0 for each ere S. Thus gi - g2e J. It follows
that Si € [8§2] and g2 c [gil, implying [gj.] = [g2]. u~ice if
f, g e Li(&) are such that g(c) = E £(cr) for each creS, it is in
order to put Tf =[g].

We show that T is linear, oontinuous and coiamutes with right-
translations. Let f1} f2 e L"G) and let , a2 be complex numbers.
We have Tfx = [gi] and Tf2 =[g2] for sooe gj., g2 e Lj (g} satisfy-
ing gi(0") = E (er) and g2(a) = E £2(cr) for each ere S. Now, if

er e S, then (al6l+a2g2)A(o-)= alg ™~ ™ a 3g3(cr)= axEjtl(<r)+ azkE j'2(o-)

= E~MWIifi + a2f 2)A(cr). liesic# T(alfjL + a2 2) = [«igl + a2g2], by
the action of T. Thus TVj*/i + a2f2) = [«igj. + a2g2] = c~tgi] +
+ a2[g2] =«i Tfi +«aTf», for all f1} f2 < Li(G) and all complex
numbers O, aa.& ollows that T is a linear operator.

To shov; that T is continuous we apply the closed graph theorem
([15], p. 238]. Let [f j be a sequence in Lj.(G) such that
fR*f and Tf™ >+ [rg], nin norm; we show that Tf = [g]. Pirst,
consider there will , ingeneral, be several g's in Li(&)
(depending on fx) such that g(a) = E ~i(cr) for each ere S.

These g’'s all belong to the same coset modulo J; for if g' and g"

in Li(&) are such that for each ere S, (g')A(cr) = ?i(cr) and
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(g")A(cr) = E~~Ccr), then (g* - g")A(OO = 0 for each er e S.
This implies g¢g' - g" e J, and consequently g' and g" belong to the
saure coset modulo J. Denote by g+ an arbitrary but fixed member
of the coset {g e LI1(G-): g(cr) = Eq. f*Ccr), er e S}, so that we. may
write Tfi = [gi]. Wt do the same for fa, f3, f4, and so on. We

then have a sequence (g } in Lt(G) such that fowWe&ch n,

BaW) = fn(tr) , eee S. How, [|l[g-gIII1=11[g]4.gnlil = Il[g]- TFI] - O
as n -»«. This mearxs that a = |nf| Ij g H01r 0 as n >«
Given e > 0, 3 N such that a, Let nO be a

fixed integer greater than N. By the definition of inf,

ilg*kno+ JII for all and if m is a positive integer,
there will exist ~ no)e d sueh that Ilg-Sno+ < «no+ ¢ e
. . 4 E
Let M be a positive integer such that —< for all m> M

Then, if m> M, we shall have

<fyt]
Consider equence [j,fn) in J formed by the elements of the
diagonal of the matrix (jr/ﬁ ), where m n=1, 2, 3, ... . |If
n > max(M, N), then lig-gn+ < e. Hence ||g-gn+ -» 0 as
n-*o . Moreover, since JN}] - J for all n, then for each ff e S,

we have g~cr) = gn(c) - ( JA(cr). But for each ff « S,
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* Hsto - SnM *(jin)A(NIBHO) + K
= D,u2
= * 4 MANH, + < ([8], D,U2)
«ii<s-rf)AL*iw v *y\ ([8728.34))
* +wW uMii [by [8],(23 and
lemma 3.2.1 ]
/ >
Sinoe k[ <» by lemma 3.2.1, and as n -»», |jg-g + x 0

and |f - fI~ >0, it follows that g(cr) - E™ £(cr) = 0, for each

c eS. That is, g(cr) = E” f(cr) for eaeh e e S. By the definition
of T, we have Tf = [g]. Thus T hal a closed graph. By the closed
graph theorem, T is continuous.

To show that T commutes with right-translations, we show that

Tf, = (Tf)a for all aeG and f e L"G”. Let f be arbitrary in

Li(G) and let Tf for some g e ~(G) satisfying
for) = % f(<r) for cach ere S Now
(gB)A(('j") = g(«O vgii-l = E(7 f(c r)l'gl’\ = Eo(fq)A(cr) for eaoh creS
and a "t follows that TfH = [ga],* ac&. Thus
Tf = [gl = (Tf) for all ae& f «M&). so,
o Q a 3

T: M g) = Li(G)/t'E is a continuous linear operator which commutes
with right-translations. By lemma 3*2.5, there exists p c¢ M(G) such
that Tf = [(i* f] for each f in M &). By the definition of T,

we must have (ja« f)A(cr) = BN f(cr) for each ere S, i.e.
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A, \A
ji(or)f(cr) = f(cr) for each ere S and f e LNG).

For each ere S, let t e I<i(&) be such that t~cr) =1~ , the
identity operator on Hf([8], (28.39)(i)). Then, Eb.(tj.)A(%')\’;: {Kcr)(t0.)A(cr)
for each e e S. It follows that E = p(cr) for each a i.e. E is
the restriction of ji to S. We have thus proved that a function E of
type (Li(G), LjG), S) is the restriction to S L+(&)-multiplier.

The converse holds trivially, by Remark 3.1 ,2\ »

3.2.10 Remark: We wish to compare our result, Theorem 3.2.9, proved
for compact not necessarily abelian groups, with the exact analogue
for locally compact abelian groups, joroved by Brainerd and Edwards
([1], Part U, Theorem 3«3). We feel that ours is slightly nore
general than their result, i» the sense that we do not require the
condition S C Int S (as tiiey do), nor any condition on S for that

matter.
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CliAPTSR 4.
Q'E - PARAISTEI SEIJ&ROUPS OF OFSRATORS N

A BANACH SPACE X

4.1 Preliminaries

Let X be a complex Banach space and let B(X
Banacii algebra of all bounded I:\near operators ¢ For O < ™ < <y,
let T(*) be an operator in B(X). The colleotion 7 = {T(®) : 5 > O

is said to be a semigroup of operators on X if

(4.1.1) TN + £2) = T(&)
for all & >0, i.e. T(& + gz)x = T(&.) [T(g2)jc] for all x e X
and y£2 > 0. As X may oarry the weak, strong or uniform

operator topology, the “ontinuity or measurability of the operators T(g)
is defined relative/”~"~the topology on X. Let X* denote the 3pace

of all continu@dJ3 linear functional on X. 7 is said to be weakly
measurable f "~ (t(£)a is Lebesgue measurable for all x e X and

if e X» ,'2\/% sald to be strongly continuous if

(4.1.2) lim ||T(@a: - T(&)m]] = O
S-So
for each aeX and all £0 > 0. Furthermore, 7 is said to be uniforjnly

continuous if
(4.1.3) lim [ITE) - Tl =0

for all Ep >0
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The irffinite:;imal operator Ao of J is defined by

(4.1.4) AoX = lim ~<T(f)a: - Xx)
?-*0+ N
for all x ¢ X f > y/hich this limit exists. Ao is in general an

unbounded operato’ on X. Denote the domain of Ac by D(Ao); then
D(A0) is dense in Xq = (T(g)a: : xeX, £>0}. Moreover, Ao is in
general not closed; its closure A, when it exists is called the
infinitesimal gen >rator of 3. The infinitesimal generator plays
a fundamental rol* in the theory of semigroups of operators. For
example if 6 is iniformly continuous, then ([10], p.278) a unique
infinitesimal generator A exists, A is bounded, and we have

TEJ =e”n, v/here e”™ is the usual exponential function

Y (gA)k
) _ . In the case where 3 is strongly continuous, a

fe i k'
unique infinitesimal generator A also exists, but A is now an

unbounded linear operator on X v/hose domain D(a) is merely dense

FA

in X, and therefore the symbol e must be redefined. Both cases

have significant applications, but the case of sti'ong continuity is
by far bhe more interesting to the analyst, since it offers more
difficult problems and calls for more refined analysis.

As pointed cut in the introduction the sort of multipliers vk

consider are such that give rise to strongly continuous semigroups

of operators. Lct 3 = (T(g): £ > 0} be a strongly continuous

semigroup of operntorr on X, and let A be its infinitesimal generator.
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Furthermore let ud = iiif 7 logj]T(E)]] be the type of 3 ([10],p.306).
5>0 *

For any ccmplex number X with ReX > W>let R(x : A) denote the
resolvent of A([10], chapter Xi). Since U is strongly continuous,
there exists ao* >ad ([10], p. 2), such that for X jrfcth ReX > co*,
we have

(4.1 *5) R(X: R)n = J~e-&TUX dE

0 vV X

for each ® e Xo, A comprehensive account of semigroups of operators
on Banach spaoes i3 found in Hille and Phillips [10], where all unde-
fined terms used in this thesis, in connection with such semigroups,
are explained.

Before we take up one by one the Banach spaces X mentioned in
the introduction, vie wish to state a modification to our definition
of a multiplier, to ofRRvei“the multipliers which involve only subsets
of X, and not the v;hole of X. If P is a subset of X, we denote byFA>
the set of all Fourier transforms £ where feF. Whether X is AP(G)
or an abstract commutative Banach algebra, or an abstract Hilbert space,
the Fourier transform (or an equivalent transform) of an fei7 is well
defihed- bet F+ and Fa be subsets of X. A complex-valued function
9 defined on G (iaking X = AP(g)) is called an (Pi, F2)-multiplier
([121, [8]) if I t12 for each f e Fi. The former definition of

a multiplier for X then corresponds to the case Fi =Fs = X.



- 64 -

In the proofs of our results in this section, we repeatedly

make use of the following lemma:

4.1.1 Lemma Let £>g) be a complex-valued Lebesgue measurable

function of g « "0, »), If $(g) satisfies

(4.1.6) (& + = <H>(&)<HA&)

for all ~ , £2 f (0, °°), then either $(?) is entically zero,

or there is a comv»lex number v such that e~V for all £ > 0.

Proof: See corollary to Theorem 4.,17«3 of [10].

4.2 The case X = AP(G)
Let G be a locally compact abelian group with character group

G. A complex-valued funotion f on Gis called almost periodic

if it is the uniform lidSUt (in the norm of C(G)) of a sequence of
trigonometric prlyr.omials on G, We denote by AP(G) the linear
space, under pointwise addition and scalar multiplication, of all
almost periodic functions on G. If G is compact then AP(&)
coincides with C(&). In defining convolution and Fourier trans-

forms in AP(&), we follow Helgason [6], For f, g f AP(G),

(4.2.1) (f . g)(0o) = M[f(as* )g(s)J

and

(4.2.2) flcr) = Ms{f(s) FH)!
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where M is the linear form on AP(G) defined by von Neumann
([18], p.-451), and we set AP(&) = [)fA : f ( AP(g)}. The regular
maximal ideale of the Banach algebra AP(&) are of the form

M, se & where M = [f e AP(g) : f(o') = 0]; thus the Fourier
transform is unique if and only if AP(&) is semi-simple. Helgason
makes use of a compactification G of G introduced van Kampen
rL17LJ- Let g, den7ote the group g with the aisgre\{e topology, and
set Gc = (G”), the compact character group of A (Pontryagin*s
duality theorem). Helgason then shows that AP(&) is isomorphic to
C(Gc) ; moreover, the isomorphism carries over to their conjugate
spaces, so that [AP(G)]* = [C(G )]* = M(Gc), the space of all
bounded regular complex-valued Borei measures on Gy. The(AP(g),AP(g))
multipliers are isomorphicC~the bounded linear operators on AF(G)

whioh commute with ta”nsuations ([6], p. 57), where a bounded linear

operator T on AP(g) which commutes with translations corresponds

to an (AP(G), AP(G)) - multiplier 9 under the isomorphism if and only
if (THA = for each f e AP(g).

The following are the main theorems in this section:

4.2.1 Theorem: For each g >0, let T(g) be a bounded linear
operator on AP(g) which commutes with translations, and let
3= (T(g) : ~ >0] be a semigroup of operators. Then 3 determines

a semigroup [ : £ > 0] of (AP(G), AP(g)) - multipliers such that

(i) for each g >0, ~ = [T(£)f]A for all f e AP(g),

and
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(a) +g(°") =~ o))" (a) for all £2 >0 and ere G.

I f, in addition, 7 is weakly measurable, then there exists
a subset of £, and a mapping v : c »v(cr) of into K,

the field of complex numbers, such that

£ (er) = (e™NM if
* 1 0
Proof: Since the bounded linear operator T(£), £ > 0, on AP(G)

commutes with translation, there exists an (AP(G), AP(G))-multiplier

$9([6], Theorem 1) 3uch that [T (g)f]A = ~f for each f € AP(g).

Statement (ii) of the theorem follows from the semigroup property

of d, since for all >0 and f € AP(G) we have

‘ r(Ei)(TUOF)]JA =% [T(ga)f]A =
iose non that V is v/eakly measurable; then for each
f e AP(&), ir e [AP(G)]*, the mapping £ “ \}r(T(£)f) is Lebesgue
measurable. In particular, if for each er e G, we define [AP(G-) 1*

by
N (F) = 76) (f < AP(G))

then the mapping £ to-C~V) = [T(M)XO0O]JA{cr) = ~(00O™cr) = </Mcr)

A A
is measurable, for each o~e G. That is, for each e e G, the
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funotion <™Y<r) is measurable. Since also, <~™+7cr) ~ €«™M(cen”™ (an)
for all ~ , g2 >0, lemraa 4.1.1 implies that for each e e G, either
% (<rJ is identically zero or rf>Y0") = for some complex number
v(cr). Now set = [c e G: ~(cr) is not identically zero], and

the proof is complete.

The next theorem is a converse to Theorem 3*2.1. «e suppose
now that @ is a fixed subset of G and ~ is a complex-valued
function defined on Go* For each £ > 0, lie define a function

P on & by

if era &
A
if Tl &

and assume that < is an (AF(G), AP(&)) - multiplier. Then we

(4%2.3)

have the following <

4*2.2 Theorem: each £ > 0, define a mapping T(g) of AP(g)

into itself by

(4.2.4; [T (M)A =

foi~~i f € AP(G). Then,

(1) U= fT(g) : E>0] is a semigroup of bounded linear operators
on AP(&), the elements of which commute Avith translations. Moreover,
7 is strongly continuous.

(ii) Let Ao, with domain D(Aq), denote the infinitesimal operator
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of 7. Then, for each f e D(Agq) and er { &8, we have f(<r) = O;
moreover, (Aof)A = vf for all f e D(Ao), which implies that v is

a (D(Ao), AP(g)) - multiplier.

(iii) If 7 is of dass (A), then = B ; moreoverdenotes
the infinitesimal generator of 7, then for each f in ®U), the domain
of A, we have (Af)A = vf (v is a (D(A), AP(G))~~fultiplier), and

D(A) = {f c AP(&) : vf e AP(&)}.

Proof(i) That, for each S > 0, T(s) is a Squnded linear operator
commuting with. translations follows from Helgason [6], p.57« The
semigroup property is immediate from the definition of T(g). We

show that 7 is strongly contiauous. First, suppose that t is a

trigonometric polynomial o say t is of the form

t = 0t<Xodl- OtOXo.a+ eee >(AX The orthogonality relations of the
n

characters in G 4|/ that

[TCe)t]A(cr) = V if er=ea , k=1,2,...,n;
otherwise
The Fo eries of T(g)t therefore reduces to
S)t =aie”0lV _ + « e™N(an'X
< n <
n
We then have, for all So > O,
Oi oi n nn
€ a ... <& J«nl]eE',(ffn)- eb°u(an>]

°n
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as E -» £0. Each character X is strongly measurable. Since T(g)t
is a finite linear combination of characters, T(™)t is also strongly
measurable ([10], Theorem 3.5.4). Suppose now that f is arbitrary in
AP(g), and let e > 0 be given. By the definition of AP(GJ" there
exists a trigonometric polynomial t on G such that |]”™><fcil < e. Since
I1HTEF - TE)t)] S IkKE)IHM ] < |ITEI]|* , and % E)t is strongly
measurable, it follows by [10] Theorem 3.5*4, ti::)’at T(™M)f is strongly
measurable for all f e AP(g). Hence, by [10] Theorem 10.2,3, 3 is

strongly continuous. This completes the proof of (i).

(ii) Let f e D(Aq) ; then there exists g = A<f in AP(&) such

that lim « [T(~)f - f] =g, in norm. For each ere G,
£mo
X
Um 1 [(T(™M)f)Acr) - f(cr)] = g(cr), i.e. lim U<j>M - 1)E(c0 = g(o-).
Erko ~ Bt 4 4
If e | Go, then O0,(0") = 0, by (4*2.3); we then have lim i f(cr) = g(cr),
Erto+"
which implies t(<r) - O. If ere Go, then < (0") = e”v7cr™. we then
have, for (Ao) >
lin kW .i) JO-) = = Now,
lim 1 (e~”™-1) =1lim 7(1 + Ev(<r) + "N 27N+ _ 1) = v(<r).
B*o+ * E-k> * 2!

Hence (Aof)A(cr) = v(cr)f(cr) for all ere @, f f D(Aq),
which proves (ii).
(iii) Suppose that J is of dass (A), with infinitesimal generator

A. Then Xq = [T(g)f : f e AP(g), £ > 0} is dense in AP(g), and D(Ao)
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A A
is dense in AP(G). Suppose there exist3 d0 in G such that 0'0fGO ;

A
choose f ¢ AP(G) such that f(crO) = 0. Now, given e > 0, there

exists f0e D(Ao) such that ||f-fO]] < e. Since £0(cr0) = 0 (by (ii)

of the theorein), and |f(crO) - fO(crO)] « ||f-fO]] < e, it fol]jpws that

f(crO) = 0, a contradiction. Hence @ is the whole
Finally, let w0 be the type of 3. Then there exists > Wy

(see (4.1.5)) such that R(X:A)f = f e"~T(g)f dg. , for all f c Xq
° A
and ReX > W.. Since for each e e G, the mapping f & f (er) is a

bounded linear functional on AP(&), we have, for all f ¢ Xq,

[R(X:A)IAC) =J e™~ ~ J f]1ACCHA

&
(X - v(<7))-12(<n)
for each ¢ ¢ G since X0 is dense in AP(g), we have
(4.2.5) [R(\:A)fJAcr) = (X - v(0-))-1£(er)

for all f e AP(&), ReX > gt. Let the complex number X (with

ReX™ ~ i) be fixed, and suppose that f e D(a). There exists

g e AP(G) such that f = R(X:A)g, since D(A) = [R(X:A)f : f e Arte)}.

A
We then have, for each e e G,

(Af)% r) [XR(X:A)g - g]A(cr)

X (X-v(a))-ia(0) - g(cr) (by (4.2.5))
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v(cr)(X - v(o") x g(cr)

v(cr)f(<x) (by (4.2.5)).

, a A /N>
Thus if f c D(A), then vf = (Af) e AP(g). Conversely, suppose
that f is an element of AP(G) such that v f e AF(G). This means
that there exists h e AP(G) such that v(er) f(cx) = h(cr) for all
ae G Then, the function g = Xf - h belongs (G) and, for

each e e G, we have

[R(A:A)Q]V)

(A-v(o-))-1 J(<r)

(X - v(a))_1(xE(0-) . fi(ff))

(X - v(<r)r>?(cr) - v(a)?(cr))

Hence R(X : A)g = f, anij so f e D(A).

This concludes the proof of the theorem.

4.2.3 Remark: The; rfesults in Theorems 4.2.1 and 4.2.2 specialise
to those in [1.3 1% C(G), in the case where G is a compact abelian

group.
4.3 The oase X =4, an abstract Banaoh algebra

is interesting to find that even in the setting of an abstract
Banach algebra, the minimal conditions on the algebra which enable us
to apply the machinery of the Gelfand representation, are all that we
need to prove results analogaus to the results of section 4.2 proved

for the function space AP(G). We state a few facts concerning the
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Gelfand apparatus. Let A be a commutative Banach algebra,
and let be the space of reguldr maximal ideals of A, Given

X €A, let X be the function defined on by

(4.3.1) M =a>x)

where @ is the bounded linear functional on A suoh that ,-H.o)= Mj
)’?\ is called the Gelfand transform of X, and wo Set A = X e J.
Given the Gelfand topology, M is a locally compact Hausdorff space,
and A  separates the points of Ofl. ForAx,Ql e A, X =y iff

(M) = yM) for all M elX}esmoreover, ipjM= 0 iff * f H If A

U a . OrE algetea, * . which JH] - 131,
([12],p-30), then A is 3emi-simple ([11], p.39), and so the mapping

X -*Q is an isometric isomorphism of A onto the subalgebra ﬁ\ of
c(m\ the set of all continuous complex-valued functions on ™A, witn
uniform norm, The »eader is referred to Chapter 3 of [11] for other
details of the Gelfand theory, which are made use of in this section,

but are not explicitly stated.

4.3*1 Definition: Let A be a commutative supremum norm Banach
algebra, and let ff} be the space of regular maximal ideals of A. A

complex-valued function (p on'/T?is called an (£ A)-multiplier if e &

for each X e 4,
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If A has a unit element, then the set of \A, a)- multipliers

is precisely fo, For let e be the unit element of A, so that

xe =X for each xe/tt Then, x a =X implies e =1, the identity
function on m . If $is an (A, a)-multiplier, then 9- qe =y
for some y e H, i.e. every (A, A--multiplier is of the form y for
some Yy € A. Of course every vy, YCA, is an -multiplier since

Q gcz (yx)A e A for all x e A. Hence, the sety™f multipliers for
a commutative Banach algebra A with unit is precisely A .

The theory of multipliers for such an algebra is not of much interest,

since a lot is known already about A . For this reason, in what
follows, we shall always tacit ure that A does not have a unit
element.

4.3.2 Definition: An opef&tmr T on A is said to commute with the

multiplication in

(4.3.2) sy O 'Zixy) = (Tx)y = x(Ty)
for all x, y in A,

Wa have the following lemmas:

4.3.3 Lemma: Let /i be a commutative supremum norm Banach algebra
with maximal ideal space m , and let T be an operator on A
which commutes with the multiplication in A. Then there exists a
unique <te ~Nie suLspace of C(7”~ ) comprising the
bounded functions, such tiiat

(i) (Tx)a = <« for each xeX
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and
@ MW =N

Proof This lemma is a combination of Theorems 1.2.2 and 1.2.3

of [12].

4.3*4 Lemma: Leb A be a commutative supremum norm Banach algebra
with maximal ideal space , and let < be A)- multiplier

Then, the mapping T : A =« A defined by
(4.3.3) (Tx)a = $ € %)
IS bounded, linear and commutes with the multiplication in <€

Proof: The fact that A is a sup norm algebra implies that A is

semi-simple ([12], p. 39). ITow for x, y e A,

[Tay)]A=<)pA =43 - (twy = (Tx)ay = [(TXYIA.

Since A is semi-simple, the Fourier transform is unique, and we
have T(ay) = (Tx)y for all x, y in A. Moreover, since A is
commutative, T(xy) =T(yx) = (Ty)x =x(Ty). Henoe T commutes
with theiphltiplication in & Now, the semi-simplioity of A
inp that A is without Order ([12], p.29). It follows by
Theorem 1.1.1 of [12] that T is linear and bounded.

We are now in a position to prove the main theorems in this

section
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4.3»5 Theorem: Let A be a commutative supremum norm Banach
algebra and let $71 be the space of regular maximal ideals of A

If 3= {T(5): € >0} is a semigroup of operators on A which commute

with the multiplication in A, then 7 determines a Collection

$ = - B, > O of functions in CAC $7) ) suoh that

(i) [t(€)x]a =<PE  for each x e A 5 9.
(ii) T = A~ , € > o, and
(iii) for all j? 0.

If, in addition, 7 is weakly measurable, then there exists a

¥

subset $7)0 of $70 and a mapping v : M- v(M) of into the

field K, of complex iminberg such ihat for each £ > 0,

; fi*« if Me $71o
if n { 0
Proof: (i) and (ii) follow fron lemma 4.3.3 , and the semigroup

property of 7 O©nsures tliat (U i) holds;
Now, sqppose 7 is weakly measurable. Then for each \re A*,

the space of all continuous linear functionals on A, and each

x £ £ - *(?(€)*) is Lebesgue measurable. In particular, for
each Mf ~ , Wwe choose an x MM, and define c Af by
N(a) = a(M), aeA, We then have

It followa
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that # (M) is meadurable for each Mefif) . Since also,

GiZT+42(M) = $4§m) <£4€Sm), it follows by lemma 4.1.1 that, for each
M( /f) , either $-(M) is identically zero or $ (M) = €jVv~1/ for
some complex number v(m). Set = [Me 071 : <p\M) 4 0] and the

proof is complete.

4.3.6 Theorem: For a fixed subset /770 of fit) t vsM-* v(m) be

a mapping of (Dt> into K. Assume that the function £ >0,

defined on SD by -

AM) \ L, W n Mc Mo
) O if Ml mo
is an (jC A)-multiplier. Mow a mapping T(g), g > 0, of A
into itself, by
[T(Mx]a * D (x ed) .

Then, (i) U = |T(£): £ > O is a 3emigroup of bounded linear
operators on A, the elements of v/hich commute with the multiplication
in A. Furthermore, 0 is strongly continuous for all E > 0.

(ii) Let Ao denote the infinitesimal operator of J and D(Ao) the
domain of Ao- Then, for each x e D(Ao) and M { , we have
>A<(M) = 0; thus D(Ao) is contained in every maximal ideal not in
Moreover, (Aox)a = vx for all xeD(Ao); thus v is a (D(Ao), a)-

multiplier.

(iii) 1If V is of dass (A), with infinitesimal generator A,



- 77 -

tuen = 7?Y) , DA) = : wcot} , i.e. v is a (D(A), A)-

multiplier , moreover, (Aa)a = vx for all a;€D(A).

Proof (i) That, for each £ > 0, T(g) is a bounded linear operator
on A which commutes with the multiplication in A, follows from
lemma 4.3*4. The semigroup property of U is immediate from the
definition of T(g). We now show that T(g) is strongly continuous

for ~ > 0. For fixed Bt >0 and all xai,

11TG)a - TE)*I] = jl[T(B)x - T(gO)noJA A is supremum norm algebra)

H(TMx)a - (T(Eo)*)all,

= sup e _ 0& V(M)a(M)
MeTH
< IWi,W | M - e”™M j
*Ni sup EVMIL e(ho)v(M)
.X M

Now, leza] < |z]elA for any complex number z. Hence,

|.(M.)vU~C <| « |[C5-go)v(K)| el(6-6>)»WI

n - k-50l],W el 11""W |
and le&v(M)] < Jebov(H)_ ,] + 1
S (M) | e&|JvWIl +1
Moreover, the assumption that each 0N\ , £ >0, is an (A, a)-multiplier,

implies that for each £ >0, <9Ke C ITH ) ([12], chapter 1).
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v(M
Consequently, sup|e£( ) <°°, for all E > O» which implies, in
M {%'
particular, that suple "JY <» It follows that there exists
M
a real nunber no such that |[JvM)|] <no for all Mexyl . We then
have [le(e)x - T(@o)xll s IMI sup[e”°v”® | - 1
* Xl sup[(fo]v(M)]er°l VAMA+ 1)( |E-€0 11v(M) )l
M L A 1
IWK~onoe”0110 + 1)( IE-Eo [n0ell0 ")
as E<b
Hence, lim Jik(e)* - T(EoOX]] = 0 fc x ed and Eo > 0.
This implies that T(E) is strongly continuous for all E >

(ii) Suppose x e D(Ao) j~then there exists y = AoX cd such

that lim 1—[T(E)x - x] =y, in norm. For each M
E>ot+ £

lim 1 [(I(5)x)A(ars5~M)] =~H), lL.e. lim+ |(®*(M)-

As in the proof of Thoerem A-.2.2 (ii), the definition of <®

implies that S)» M{ fl)0O, then x(M) = 0, and if Me , then

(Aox) v(m) x(M).

(ii”™ Let I be of dass (a), with infinitesimal generator A. Then
the set /io ~ [T(E)n : x€d, E > 0] is dense in d and D(Ao) is dense

in d. Suppose there exists Mo in TT) such that flo { THg, By the

definition of T(£), we shp.ll have (t(e)x)a(Mo) = 0 for all xed, E>O0.

Hence T(E)® e Mo for all x «d and all E> 0 Thia implies /foC Mo.
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As Ao is dense in d and M) i3 closed (every maximal ideal is closed)
it follows that A C Mo This is impossible, for My is a maximal
ideal of d. Hence 7T)0 is the whole of tn

We give an outline only, of the rest of the proof, since we
follow preoisely the same steps as in the last part of the proof of

Theorem 4.2,2. Let wo be the type of 7. Then jtte exists (%> W

such that
RO\ : A)x = f e“~XT(g)a: for all xedo, ReX > «i.
o
Thus, for all x e die,
[R(X:A)*r(M) =] (X - v(M))-"S(m)
for eaeoh Mem . Since Jtg™itlense in A,

[r(X:A);cla(m) = (X - v(M ))Q (m) for all x e A, ReX > wie
Let X (with ReX > wi) be fixed, and suppose that x € D(A). Then

X =R(X : A)y for some y €A, and so, for eaoch M e ]fY),

(Ae)a(M) = [XR(X : A)y - Y]AM) = v(M) m(M).

Thus x e D(A) implies vx € £ . Conversely, suppose X e d
% A A A
IS 3U t h=vx €d , Then, y = X&? - h € A, and we have

R(X : A;y =Xx. This implies that x e D(A).

4*4 The case where X = H, an abstract Hilbert space
The multipliers for an abstract Hilbert space K have been discus

sed, in some detail, in Chapter 2. We now have the following theorems
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4.4.1 Theorem; Let 1l be a Hilbert space and let E = [e”: iel} be

a complete orthonormal set in H. If 0 = [t(I-) : g > 0} is a semigroup
of bounded linear operators on H whioh commute with the projections

P., i (I, then 3 determines a collection [$

: E>0] g £(E) of

£
(H, H)-multipliers such that

(i) [T(g)a?]A = r for each x e H, £ > g\

(a ) iit(c)|l = ifoj, 5 > o,
and
(ai) for all™~”~a >0.

If, in addition, 2 is weakly measurable, then there e;<ist3 a
subset Eo of E and a mapping v ; e. ‘mv(e.) of EO into K, such

tnat for each £ >0

if c Eo
N(ef) »
if ei j Eo
Proof: (i) and (U ) follow from lemma 2.3.6 , and (U0 i) follows easily

from the semigroup property of 0.

Now, suppose 7 is weakly measurable. Then for each Y e H*,
the space of all continuous linear functionals on H, and for each xcH,
£ * \[r(T(g)a:) is Lebesgue measurable. Now each e~c E determines a

H*, defined by =~"(en™, X e H. Thus for each e_f E

and £ >0, ~(ei) = (T(E)ei)A(ei) = NMN(T e is measurable.
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Since also, %*rc,a(el) = <£ (el) Cz(el)’ it follows by lemma 4.1.1

that, for each E, either™ (e~ is identically zero, or
/ \

N(et) = "ei’ for some complex number v(e”). A  now set

EO = [e.e E: (e.) 40] and the proof is complete.

4.4.2 Theorem: For a fixed subset En of E, let8 * n

be a mapping of EO into K. Assume that the function <, £ > O,

defined on E by

if e~c EO
V' it ex\E0
Kr
is an (I, H) - multiplier. Now a mapping T(”~), £ > 0, of
H into itself, by
[T(E)x]A = 0_x (xeH) .

Then, (i) 7 =[T(c) : £ > 0] is a semigroup of bounded linear
operators on H, the elements of which commute with the projections
P.,, iel, Tnore, 7 is strongly continuous for all g > 0.

(i) Lei denote the infinitesimal operator of 7 and D(Ac)
the domain of Ao« Then, for each xeD(Ao) and e~ EO, we have
x(e”™) = 0. Moreover, (Aox) = vx for all xfD(Ao); thus v is a
(u(Ao), H) - multiplier.

(iii) If 7 is of dass (A), with infinitesimal generator A, then
EO = E, D(A) = [xeH : v& e fij, i.e. v is a (D(A), H)- multiplier

and moreover, (Ax)a = vx for all x e D(a).
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Proof: (i) By lemma 2.3.4} T(g), for each B > 0, is a bounded
linear operator on Il wliich conmrtes with the projections P#», iel.
The semigroup property of I7 is irmediate from the definition of T(g).
We show that T(©) is strongly ccntinuous for B > 0. To, this end,

wre show that lim |jT(@)cc - T(@O)x]] = O for all areH fmd ~o> 0. Now,

for arbitrary but fixed eOe E,

Fv(e0) e. - e0

(T(5)e0)Ae.) =

ei +"0

e?v(eo)G f and for

axx > u, Wwe nave
lii || T(e)eO - T(Co)eOl] = lim eN - en°NeoOeol]
Lii, [JeSv(®°) . e& v(eo)]
« |
= 0
sxnce ePv(e0) %y continuous in g. It follovrs that for each e-je E,
we have T(ijO)ei ] = 0, for all & >0. If s is a

finite linear combination of elements of E, say
® = axei + aZa+ ... +

then, for B& > 0, we have
N

lim [1TG)a - TG,)®]] = lim | S ai [T(M)e. - T(&,)e.J]l
~ L 1 1
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N

lHE Y |0J||T(Oe.-T(eo)ed
1 1

i=1
N

Y k] Um \\TUle. - T(&)e,|
L I
i=1

Since lim |jT(E)e. - T(™o)e.]] = 0 for each i =1, 2, ..~ IlI, it

follows that Ilim ||T(Ea: - T(?0)m]] = 0 , for all & > 0, Suppose
now that X is an arbitrary vector in H. The set

S =[e.e E: <X, e. >~ 0] is countable ([15], p.253)» If we

arrange the elements of in a def order, say
G = |et, e2, e
then we may express the Fourier series of X as Xx = v < X,e, >e;

moreover, by the theory of absolutely oonvergent series,

Wiz = \) 1<, tNH% is “independent of the order in which the

REL N
elements of Sk Simve been arranged. Let N o< X,ey > en;
I_]
then 0 as N ® oo Now, for Eo > 0,

HT(~ia)- T(60)»||<||T(g)»-T(5)a”||+||T(Oail-T (e0)ail||+||T(€o)ar-T(50)a>||

- T a2 T T(@&)ar |+ [1TEB)I [l - all
by the linearity of T(g), g > 0. As £ # 80, we have
lim |1T@x-T(go)a; | ISI I TCo)il'] |®-~l+ lim k(O ~-1(€ 0)% IM 1t (&>]

= 2[1TE 1, 1l - all
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since by an earlier argument, Ilim ||T(£)a”-T(go)a®]] = 0. But T(")
is bounded, and Iim | - x]j = 0. It follows that Ilim |[T(g)x- T(£o)x]]=0,
N*&*~ 11

for all So > 0. This shows that 7 i3 strongly continuous.

(ii) Suppose x e D(Aq) ; then there exists

y = AgX ¢ H such that Ilim L [T(g)x - x] =y, in norm. l'or each

£*0+ /0Os
vV E. Ila" -£0.)] =$>(.),
£E0+ N
i.e. lim”™ pr(<p™NEe™) - Dx(e™) =y(en). As in the proof of
Theorem 4.2.2 (ii), the definition of implies that if EO,

then x(ei) = 0, and ii* e~ EO, then (Aox)A(e”) = v~N) x(ei).

(Gi) Let 7 be of dass (A), with infinitesimal generalor A.
Then Hg = |T(S)x : x « V. £ » °l is dense in H. Suppose there exists
eOe E such that £ By the definition of T(s), we shall have
< T(g)x, e0 >=.0 for all x eH and all g >0, i.e. <HO, e0O >=0.
As Ho is derms8<Sin H, this implies < H, eo > = 0. llence ec = 0,
which cannot be, since all the elements of E are non-zero. Kence EO
is the whole of E.

We give an outline only, in the rest of this proof, for the same
reasons given in the last part of the proof of Theorem 4.3*6. Let W
be the type of 7; then there exists tii > oo such that

B(\ : A)x = J e-~ T(™)x dg for all x e HO, ReX > u*. Thus, for
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all xf HO) [R(\:A)x]JA(ei) =] e~"X[T(Ma:]JA(ei) dg = (X - v(ei)“1$(ei)
(o]
for each e”e E. Since Hg is dense in H, we have

[R(X:A)a;]A(e™) = (X - v(en)) Ix(en) for all x <H, ReX » Let
X (with ReX > (%} be fixcd, and suppose that x e D(A~Jhen

X =R(X : A)y for some y e H, and so, for each

(Ar)A(ei) = [XR(X:A)y - y]JA(ei) = vCen ANj~pus x e D(A)
implies vx € H , Gonversely, suppose X e such that

U= vx € H. Then, y = Xx - h £H, and we have R(X:A)y = X,

This implies that x e D(A). Thus D(a) = (»c0 : vx eH], This
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CHAFTER 5

N-PARAMETER SSUGROUPS OF OFERATORS (B

C(G) RL (g), L<p <&

Let K be the field of complex numbers, and let S ~ the
set of all n-tuples o = (a*, 02» ..., ® ), where a.<K for each

i. Wxth the operations of component uisD additi \!nd scalar

multiplication, is a linear space. Fors «y € K~% the inner
product a.B of a and R is given by = «igk +a2Bs +...0HRkn -
Sujn_Lpose 0 e Kn is such that eaoh compo tnt ci. is real. Then aeRn.

the n-dimensional Euclidean space. Denote the unit vectors in R’r; by
et, ej, e where
et = (0, O, 0, 1, 0, ..., 0

with 1 in the i~'-planié’' and zero elsewhere. Then, for each ~RA,

5 = £ + £262 + €ne , for some real numbers i sl,2,..,,n.
Denote by R* 1:the cone © e > OJ exoluding the origin
(0, 0, ..., O). The set R+ is a positive cone but not open.

S f be a compact abelian group, and let U be an arbitrary,
but member of the usual set JC(&), LMG) : 1 $p <«J of
complex-valued continuous functions and p-in.tegrable funotions on G
Suppose there oorresponds to each ¢ e R+ an operator T(g) in B(u).
The Collection J = [T(g) : geR’r; | is called an n-parameter semigroup

of operators on U if

(5.1.1) TN + 1) =TU)T ()
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for all £, 1t eR* , i.e. T(g + T)f = T(E)[T(r])f] for all f e U
and t) e R* . We shall, in the present chapter, obtain a generali-
sation to n-parameter semigroups of operators, of Theorems 1.1 and 1.2
of [13]» The results of Chapterk are of course analogues also of

Theorems 1.1 and 1.2 of [13]e

For each £ = U i, €a, eee, in & , 4 P
T(E) =T(5I6I +?222+ ... +y g =TC"eJ T («& ... Then.
.V
Setting T(5kek) = Ticsk), k=1, 2, ...., n, vk see that
{TU) : g <R+] is a direct product of n one-parameter semigroups
= : N * and for N e RN’ we have
(5.1.2) T(€) ... Tn(™)

The operators TA/.(”) commute tath eaoh other, since for instance,

+ g2a = Maes + £s.Ci implies that

Ti(5)Ta(€ ™V j(glel + £2e2) =T e~ edJ =TaC”rT"i).

The boundedness of g e R* implies the boundedness of every
Tk(?k), sin~e”~r each k=1, 2, ..., n, = T(g™k'), where
element (O, O, ..., O, £g 0, ...,0) of R*  which has

Nj~"the kMa-place and zero elsewhere. Moreover, the linearity of
T(g) implies the linearity of each T~g”). For let T(») be linear,
and suppose that exactly one of the T~”")'s , say TxU I) > is not
linear. [The choice of Tj.”) is indeed arbitrary; because the

operators commute, we can always rearrange tlie expression

Ti (&1) T2(E2) e ~(~n) 30 as ft2176 the operator V7hich is assumed
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non-linear to ocoupy the position of Tj.(€*.)]. Thus for

fj, f2 e U and complex numbers al, a2, we have
T(5)(«ifi +«a*a) =1i(6i)[TaUa) (™) («ifi + «afa)]
= Tzx(€i)[aiTa(€a)... Tn(™ fl + 03 V ~'n A"

t «i Ti(Ci) e TN(ENn'fi + “a ™™ W s non~

«i T(6)fi +«2T(g)fa

whioh oontradicts the linearity of T(g). Thus 3 = (T(E): £ e R* j
in B(u) is a direct product of n one-parameter semigroups

s bk * O of operators in B(U).

To each £ 4« R* corresponds an infinitesimal operator

AoU) of {T(e) : Sf i defined by, ([10], [3]),
(5.1.3) Ao(g)f = Tim qjT(t€)f - f]

S"\ towot+ t
wherever this limit *xlIsts. |If we denote by A the infinitesimal
operator of N~ > 0], then ([10], p. 336), for each g e R*
we have . Thus the set [Ao(E) : g e R*j of

k=1

infinitesimal operators of @ is itself an additive abelian 3emigroup
of operators.

The following theorems are the main results of this chapter.



5.1.1 Theorem: Let 7 = |T(g) : g e R* } be a semigroup of
bounded linear operators on U. 1f, for each E e R*, the operator
T(g) commutes with translations. ihen 7 determine3 a Collection

{$. : EeR_ Jof (U U)-multipliers such that
»

(i) for each £eR™, 9fF f = [T(N)F]JA for all f and

(a) = , for all T €

I f, in addition, 7 is iveakly measurable, then tliere exists
A S\ . \ A .
a subset & of & and a mapping v : ffVv v(cr; of & into K ,
such that
-vier} it o ¢ Gy
if Ot
Froof: Since the bounded linear operators T(g), geR* , commute
with translations, fcrem 0.1.1 of [12] implies that there exists,
N
for each £ (4, U)- multiplier  suoh that [T (g)f]A = <€

for all Statement (ii) of the theorem follows from the semi-

groufp proper'ty of 7, since for all g, feR™ and f e U, we have
n +r)lf = [T(A+n)f]JA = [T(E)(T(n)f)]A = <BT (ri)fla = * f

Now, 7 is a direct product of n one-parameter semigroups

™" = N > 0} of bounded linear operators on U. The fact

that T(g), E e R*. commutes with translations implies that, for each

Kk, also commutes with translations. For if we suppoee (as
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was done earlier to prove linearity of each T~ (”)) that T~Ci)
does not commute with translations, then, for any f e U and aeG,
we have T(g)fa = Tt(~) T2(?2)
- TN} -
- liCh -
« T.C5i)tl»(5j eee Tn(EnW tI'*v?

A [TttgjTaUa) ... T ' *

= [T(9)f],
whxch contradxcts T(g) commutii\g with translations. Thus each
1~(57), > 0, is a bounded linear operator on U which commutes

with translations. Theorem\>M ,1 of [12] then implies that there

exists for each Kk, U)- multiplier 07 such that
0. ill f e U. Hence, for f cU and £ e A
-1 fcr a3 n
we have
<?

[T(?M A = [Tt(€i) e Tn(*n)f]JA = 0™ [t2(?2)... Tn(?n)f]A
oron ... o~rf . But [T(™")fJA=0gf for some (U,U)-multiplier

follows that

(5.1.b) o™ = 0”N0N2 ... ON

for each ™ e r\ Now, the semigroup property of ~(~7™ > *or

fixed k, implies tliat O,. (er) = 0Jcr) O (<r) for all crci
TcHkK % n

and BN, tik > 0.



Moreover, the weak measurability of T(») implies that, for fixed

0OeG 9P () = is Lebesgue measurable. It follows
> A
by lemma H*1.3 that, for each creG, either < (er} is identically
v (er) "k
rero or «™cr) = e kK for some complex number v~(a").
Let &k = [creG : <£Jcr) 4 0} , k =1, 2, n,
a n a
let Go= HG . Siiice for fixed ere 6 &
k=1 k
<Ha) = & (cr) <E(er) ... € (er) , it follows that if e { Q@
then <PN\a) is identically zero, and if Q, then
*5(<r) = 8V nw
=,W *)* 22v2(<r)* ... + V n (<r) x eg.v(ff) ( where
v(o") = (vi(er) , v2(cr), ... , vn(cr)) c e Tkis completes the proof

of the theorem.

< S A A
5.1.2 Theorem; i?or a fixed subset @ of G, let v : er-» v(cr)

be a mapping of | o into Kn« Assume that the function O0_, E e R®

defined «h & by

4 (.0 if er{ Q

is a (U, U)- multiplier. Define a mapping T(£) of U into itself by

[T(5)f]A = f (f e V)

Then [T(~) : g eR j is a strongly continuous semigroup of bounded



linear operators on U, the elements of which commute with translations.
For arbitrary, but fixed, £ e R* let Aq(®) be an infinitesi-

mal operator of £T(5) : n }, and let D(Ao(g)) denote the donain

of Ac(5). Then, for each f e D(Aq(£)) and o<]Co, we have f(<r)= 0.

Koreover, [Ao(?)f]A(cr) = £.v(cr)f(cr) for all f e D(Ap(g)), e e .

Proof: That T(g) is a boundad linear opera”~fbr eaoh 5 c K+,
follows from (35.2) of [8], The semigroup property and the faot
that the operators commute with translations are immediate from the
definition of T(g). The proof of otrong continuity of T(g) is as
in Theorem 4.2.2. First, we auppose that t is a trigonometric

polynomial on G, say t = guXCI_I+ aZXOa + ...+ akxcrk' The orthogonality

<3

relations of the elements of G imply that

T(g)t = alenr*1n 1AXO+ + ...+ oKt , € /\d*l . We then have

| 1T(9)t-T(&)iflA*ie5 v(HIV | -c1e?0*~crix. )

N - *
¢+ (.,.xe" *
g/ @ K e, k * )I)
k
< 3 :5*v(0'i) o™No«v(oi) [+..+]a ||e£'V(Crk)— edo.v(crk)]
as £ -* go(convergence in K is defined oomponentwise, i.e.

MeKn, g~rn iff ~ - r~, for all i =1, 2, ..., n).
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Suppose now that f is arbitrary in U, and let e > 0 be given.
Then ([14], 1.5*2), there exists a trigonometric polynomial t on G
such that |Jf - t]] < e. Sincc | IT(@f-T(@)tl « HTEI'NIf-ti for
each E €R' , it follows that T(g)f is strongly measurable.
Henoe T(g) is 3trongly continuous (for these last asser]ions, see
proof of Theorem 4.2.2).

Let E be arbitrary, but fixed, in R* let f e D(Ao(Q)).

Then there exists g=Ac(£)feU such than”=lixa i[T (t€)f-f],

A 1 t-»0+ t A
in norm. For each creG, g(cr) = lim r [(T(te)f)A(cr) - f(cr)].
A a
If e { X, then g(cr) = - lim ™ £(cr), which implies f(<r) = 0.

If e e @, then g(cr) =1lim I(et€-v(0) - 1)?(<r)

z
i.e. [Ao(™)f]A(0-) = limJrU + tg. v(cr) + + ... - 1) f(cr)
fv lim (g.v(cr) + + ... ) f(cr)
vxn tho+ 2!

= C.v(o-) f(cr).



- 94 -

CHAPTER 6

AK APPROXIMATION THEOREM FOR SEIHGROUPS OF OFERATORS

Let G be a compact abelian group v/ith character group G, and
let u be an arbitrary, but fixed, member of the set [C(G),L"N(G):1l«p<n»}
as in Chapter 4. Let v : S#amv(c) be a mapping of t irito K
> . v o
that, for each ~ > 0, e” is a (D, Uj - multiplier.

E > 0, an operator T(g) on U, by

(6.1.1) [T (c)f]A(0) = f(er)

A - - -
for all f e U, oG 7 investigate, i chapter, the degree of
approximation of the identity operator £ operator T(g) for small
values of the parameter ¢, i.e. the Order of magnitude of ||T(g)f-f]l,
as a function of Our main result generalises to compact abelian
groups Hille and Phillips' result ([10], Theorem 20.6,1), proved for
the oircle group. SuqgflT~sults conoerning approximation of the

identity are of intgrest for applications to the taeory of suwmability

and singular Integrals ([2], [9]).

6.1.1 Definition: Let ; = [T(®) : g > 0} be a strongly continuous

semigroup of bounded linear operators on u. 3 is said to be of dass

(1, c), ([10], p .322), if

U) I IJTU)lIki€ < &

and
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1 f1
(0) lim+-  T)f A~ =f
n-=o0 ~J

in norm, for each f ( jj,

For the basic classes of semigroups of operators on a danach space,

see 10.6 of [10].

5.1.2 Definition: Let J be a subset of &

<A binear extension
of J, denoted by xs the set of all finite linear corabinations of
elements of J. ju-r, the closure of in the norm of U, is called

the closed linear extension of J.

Sinoe the closed linear extension of J is the smallest subspace
of U containing all the characber3 cred, we see that 13
identifiable with the set >ofi*\ri6onometric polynomials on J([8],(27.8)).
Moreover, if f e U is such that f(cr) = 0 for all er{ J, then
([8], p- 98) there"™hgts a sequence [tnj in such that

If - tnl 0. Since T is closed, this implies that f e £ j%

6.1.3 The Let & be a compact abelian group and let U be an

arbitr but fixed, member of the set [C(g), L (g): 1 $p <«j,

Supppsh the operator T(g), £ > 0, on U, defined by
(6.1.1) satisfies

(i) J HTEIIME < oo

and

(ix) lim A T(g)f de = f for each f e U
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Then, (a) Set J = je e 5 : v(cr) = Oj. We have

(6.1.2) lim inf i |ITEf - f|] = O
E< ot

iff f Dbelongs to the closed linear extension of J:

(mj) Let A be the infinitesimal generator of [T(£): E > Oj.

Por each f e D(A), the domaim of A, we have

(6.1.3) T(E) - f =g(Af + 0(1))

for all E >0, and D(A)

[f el : vf e U].

Proof; (a) By Theorem 1.2 of [13], 3™ (t(?) : E>0] is a
strongly continuous semigroup of oparators on U. The assumptions
(i) and (ii) of the theorem imply that 3 is of dass (1, Cj.),
Suppose f e U satisfies (6.1.2) ; by Theorem 10.7.2 of [10],
T(g)f =f for all E >*0. Conversely, if f c 6 is such that
T(g)f =f for all E>v, then it is clear that f satisfies
(6.1.2). Thus f satisfies Ilim infi ||T(@)f f]] =0 iff T(g)f =f
for all E > 0.

H« show that T(£)f =f for all E >0 iff for each

er e e V(07) $(<n)

is independent of E« Suppose T(g)f =f for
allVv > 0. Then for each er e & we have [T (g)f]A(cr) = f(cr).
Since f (er) is independent of E it follows that e~v7r™(c) is

independent of E> for each ere t. Conversely, suppose that for

each e € G, e”v/a™(cr) is independent of Ee Then eNv*a/?(cr) =

_ e2nv(°")f(o-)j wvrhich implies f(cr) = e~rv<Mf(er) for each e e &
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We then have [T (g)f]A(ff) = f(cr) for each er ¢ G, which implies
T(E)f =f for all £ > 0. The proof of (a) of the theoren will be
complete if we show that an f e U belongs to the closed linear

extension of J iff for each cre e5v(°)E(0-) is independent of

So, suppose that f is in the closed linear extension of J; then there
is a sequence [fAJ in £.j such that |]ffl1l1 <« 0. Let ere $, |If ffej,
then vicr) = 0 and hence e~V ™ (f) = £(ff) is independent of £.

If w{ J, then Ccr) = 0 for each n. SiSce then,

INen)| < |E(ff) - En(ff)] + 12COYI = and

I 0| * 0, it follows that f(cr) Hence e~"-’f(tr) = 0

is independent of £. Converse pose f f U is such that, for

eaoh ff e G, env™ f(ff) is independent of If ff ] J, then

v(ff) * 0, so we must haye~”~ff) = 0. By the remarks following

Definition 6.1.2, must be in the closed linear extension of J.

(b) Let Ao be the infinitesimal operator of 7 = {T(£): ? > 0}.
Since 7 is of dass (1, C*), Theorem 10.7.2 of [10] implies that
for eaejf»™ < D(Aq), we Imve T(g)f - f = £ (Aof + 0(1)), for all £ > 0.
But sinoe 7 is of dass (i, Ci), Ao i3 closed ([10], Theorem 10.5.3);
hence Ao = A, the infinitesimal generator of 7. It follows that
if f c D(A), then T(g)f - f =?2(Af + o(l)) for all £ > 0.

The fact that 7 is of dass (1, Ct) implies that 7 is of dass

(A) ([10], Theorem 10.6.1). It now follows from Theorem 1.2 of [13]

that D@A) = { f e U : vf e U]}.
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