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ABSTRACT

The spin-wave theory in Heisenberg model of ferro­
magnetism is investigated with the Holstein - Primakoff 
transformation and with emphasis on the spin wave interactions. 
The temperature T below which the concept of magnons is 
valid is determined. By a special expansion formalism of 
operator (l-a+a/2S) 2 which yields 1+('1-(1-Jg) 2 )a+a it is shown 
that quantized spin waves which behave like spin 1 quasi­
particles (with dispersion relation oV~ k ) called magnons 
at temperatures T < T^, are Bosons with an effective

9>s „(negative) electrochemical potential y that varies as T in
the wave-wave interaction approximation. The various coeffi­
cients of Tv in the expression of the spontaneous magnetiza­
tion M (T )/M (o ) = l-(C1T3/2+C2T5/2+C3T7/2+C4T4 ) as well as the 
specific heat for some ferromagnets are calculated. The results 
are remarkabVQclose to the experimental values obtained by
other investigators. The method used enables one to deal 
especially with regimes of small spin values S for which y 
differs substantially from zero. The influence of the chemical 
potential on some thermodynamic quantities are found for 
ferromagnets with Hexagonal-^close-packed structures, as well 
as for cubic crystals, The existence of the spin wave inter­
actions and hence of non-zero effective chemical potential is 
shown to give rise to a lowering of the thermodynamic internal
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energy with the implication that spin waves, on the average, 
form bound states called spin complexes. The kinematical 
as well as the dynamical interactions on the thermodynamic 
quantities are also found for some ferromagnets, by sub-t-
jecting the magnons to intermediate statistics. The 
influence of the spin-wave-spin-wave-spin-wave interactions

O von the coefficients of Tv in the expression of the spon­
taneous magnetization of some ferromagnets are found to 
be negligible in comparison with wave-wave interactions.
An attempt is made to extend the above calculations to

etisspin complexes in antiferromagnetism, a phenomenon which 
seems to be relevant to high temperature superconductivity.
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CHAPTER I

FERROMAGNETISM

1.1 Introduction
Our aim is to elucidate new concepts and formalism 

that are germane to the subject of spin waves in low 
temperature ferromagnetism using the metals Iron, Cobalt, 
Nickel, Gadolinium and Dysprosium as concrete examples.

Magnetism is a phenomenon displayed by, or a 
macroscopic property possessed by some charger-neutral 
material bodies whereby one body physically attracts or<?vrepels another. In fact, in the modern parlance, magnetism 
is one of the oldest of f t  observed phenomena in the 
history of science. According to CHIKAZUMI (1964), 
scientific investigations were first made in the sixteenth 
century by Gilbert, who studied terrestrial magnetism and 
magnetic induction. lie found that a magnet loses its 
magnetism af high temperature. The most fruitful period 
in the study of electricity and magnetism came at the end 
of the eighteenth century and continued through the nine­
teenth century, culminating in the great Maxwell's equations, 
The law of magnetic interaction between two magnetic poles 
was discovered at the end of the eighteenth century.
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Magnetism due to electric currents was investigated by 
Oersted, Ampere, Biot and Savart at the beginning of the 
nineteenth century. Arago tried to magnetize a magnetic 
substance by using an electric current. Discoveries of 
diamagnetism by Faraday, of magnetostriction (a deforma­
tion due to magnetization) by Joule, of the curie law by 
Curie, of hysteresis by Ewing were all made during the 
beginning of the nineteenth century. Ewing perhaps was 
the first person to study magnetic phenomena from the 
atomistic point of view. He tried to explain the phenomenon 
of hysteresis in terms of the magnetic interaction between 
molecular magnets. He was followed by Langevin and Weiss, 
who gave the correct interpretations of paramagnetism and 
ferromagnetism respectively from the atomistic stand point, 
It is now known that magnetism is caused by moving electric 
charges. ArTo look for elementary sources of a magnetic field, 
we may consider a circular current I, enclosing an area S. 
The combination IS = M is the magnetic Dipole moment of

irou:the circular current, The circular current, also called 
the current loop, is a magnetic dipole and thus a source 
of a magnetic field. But do such current loops exist in 
nature? According to Ampere-s hypothesis, electric currents
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flow inside molecules and atoms, which implies that atoms 
and molecules are current loops, and therefore are magnetic 
dipoles. In fact, Ampere's hypothesis was confirmed when 
the electron structure of the atom had been understood.

around atomic nuclei produce electric currents, and current 
loops produce the magnetic field. However < 9  these words
are interpreted literally, in terms of classical (non­
quantum) concepts, since only classical concepts were 
known in Ampere's time, the inescapable conclusion is that 
nature has no elementary magnets, that is, no smallest 
sources of a magnetic field since the average classical 
radius of such loops is zero. But this conclusion is in 
contradiction with the reality. It is incorrect because 
it ignores the quantum nature of the motion of microscopic 
particles. Classical mechanics, often referred to as 
Newtonian mechanics to emphasize the role of its creator, 
provides an accurate description of the motion of macro­
scopic bodies, but the motion of electrons in atoms is 
governed by quantum, not classical mechanics. This radically 
changes all properties of the atom, including its magnetic 
properties.

It was confirmed in the sense that
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Quantum mechanics does not reject the fact that the 
gyromagnetic ratio for the electron is

(Y = e/2m ) „ . .(1.1-1)

where e is the charge and m g is the mass of an
Lth the projection
5 m = 0, ±1, ±2,

electron. Hence an electron in a state wi1 
of its angular momentum equal to m, where n 
. .,,±£ (according to space quantization) in quantum mechanics 
has the projection of its magnetic moment

,, ehm M - 7=5— , m -z 2m ’ = 0,±1,±2^ j >,±£ (1 .1- 2)

and h is planck’s cons
The conclusion that t his- suggests is that a moving
electron can constitute an elementary magnet, ,
provided it is in a state with non-zero angular momentum.s<£rOn the other hand, an electron moving round the nucleus may 
he in the state with zero angular momentum, (the S-state) 
in which case M *= 0, too.

With the observations of the experiment carried out 
by Stern and Gerlach while sending a beam of silver atoms 
through a non-uniform magnetic field as well as the suspicion
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borne from an analysis of atomic spectra, a quantum 
particle may possess an INTRINSIC ANGULAR momentum. This 
is inherent to the particle in addition to the orbital 
angular momentum caused by the motion of the particle in 
space. Therefore an electron in a state with zero orbital 
angular momentum possesses a non-zero value for the 
projection of its magnetic moment by virtue of its 
intrinsic angular momentum.

This intrinsic momentum is also called SPIN, The 
projection of the intrinsic momentum of a particle can 
assume not only integral values but half integral values 
as well.

The magnetic momen t of a free atom basically has four 
principal sources:

(i) the spin with which electrons are endowed.
Cii) their orbital angular momentum about the nucleus, 

(iii) the combination of both intrinsic and orbital 
angular momenta J, and

(iv) the change in the orbital moment induced by an 
applied magnetic field.

The first three effects give paramagnetic contributions to 
the magnetization, and the fourth gives a diamagnetic
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contribution.
The most natural way to classify the magnetic pro­

perties of a material is by its response to an applied 
magnetic field. The response is chi

where M is the magnetization, or magnetic moment per 
unit volume, and Bq is the applied field.

the induced moment is directed oppositely to the magnetic 
field. This kind of magnetism is a direct consequence of 
Lenz's law applied to the motions of the elementary charges 
(generally electrons) of the system. All materials have 
diamagnetic contributions to their susceptibilities, but 
for most materials, the diamagnetic contribution to X is 
small compared to the total, and is usually neglected.

For Paramagnets, the susceptibility is positive and
-3 3temperature dependent, It is of the order of 10 cm /mole

susceptibility X, in the relation

M = XB. o

Diamagnetic materials ha mall, negative tempera­
ture independent susceptibility X. The magnitude of X

6 3is of the order of 10~ cm /mole. Since it is negative,

at room temperature and varies approximately as 1/T, where
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T is temperature. (see fig, 1.1). This kind of magnetic 
behaviour can be explained as a consequence of two opposing 
effects: one, the tendency of the applied field to orient 
the moments in the direction of the field, and the other, 
the tendency of thermal agitation to randomize the 
orientations of magnetic moments. The paramagnetic suscep­
tibility varies linearlv with B for small fields ando
consequently vanishes for zero applied field.

However, it is also well known that some crystals 
containing magnetic atoms develop a macroscopic magnetic 
moment in the absence of an applied field, if they are 
cooled to sufficiently low temperatures. These are ferro­
magnetic materials or simply ferromagnetics.

Ferromagnetism does not exist at all temperatures.
As temperature increases, the intrinsic spontaneous magnetic 
moment of a body decreases and vanishes at a certain tempe­
rature Tc called the Curie temperature (See fig, 1.2).
This of course occurs if the external magnetic field is zero. 
Above the Curie temperature, ferromagnetic materials become 
paramagnetic. At high temperatures all ferromagnetic 
materials are paramagnetic but not all paramagnetic materials 
are ferromagnetic at low temperatures. Different materials
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Fig. 1.2 Spontaneous m agne tiza tion  as a fu n c tio n  o f 
tem pe ra tu re  .
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spontaneous magnetic moment density M at T 0.s
Neel predicted the existence of another kind of 

cooperative magnetic phenomenon, which he called Anti­
ferromagnetism, In the simplest form of an antiferro­
magnetic material, the lattice of magnetic atoms can be

have different values of the curie temperature Tc and

ic ato 
bing sdivided into two equivalent interpenetrating sublattices,

A and B, such that A atoms have only B atoms as 
nearest neighbours, and vice versa. The magnetic inter­
actions are such as to cause the sublattice magnetizations 
to be antiparallel. At absolute zero, each sublattice has 
its maximum saturation magnetization, and as the temperature 
increases, thermal agitation reduces the sublattice spon­
taneous magnetization in much the same way as for a ferro­
magnetic material. However, the net magnetic moment of 
the spontaneously magnetized antiferromagnet is zero at all 
temperaturesjS^ecause of the exact cancellation of the 
spontaneous magnetization of the two equivalent sublattices.

The outstanding development in the phenomenological 
description of ferromagnetism is the theory of the molecular 
field by Weiss. . Shortly before this, Langevin had
developed his theory of paramagnetism based on the funda­
mental idea that the orientation of molecular dipole of
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moment y in a field B is governed by the Boltzmann's 
distribution law. Given N elementary dipoles per volume, 
each of magnetic dipole moment p, in a magnetic field B , 
the kinetic energy E is given by A

E - -y ♦ B = Cos 0; y = |^|, B = \ B \ . (1.1-4) 

6 is the angle between y and B. Writing

<U'B> = {yCos0> . . . (1 .1-5)m =
B

J yCose e^pB("os02irSin0 d01

m =
| e3yBCos02TiS^^ de

° A
. . .  ( 1 .1- 6 )

M = Nm = Ny CotanhByB - _N_
BB ... (1.1-7)

For small B (high temperature T) ByB << for small x,
3 1 x x -1tanhx = x-x /3, cotanhx = (x - -~-) - ----- 9

x(l-x^/3)

m = y(_i_ + _yt13yB 3

- ¥l+l> 
... (1 .1-8)

M =  A - r NA  bM 3 " C 3k T d.1-9)
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The basic idea of the Weiss theory is that the effective 
field acting on an elementary magnet in a ferromagnetic 
medium is not to be identified with the applied field B,

he iibut is rather to be taken as B+qM where H is the intensity 
of magnetization and q is a proportionality factor 
independent of temperature. The portion ql is called
the molecular field and is clearly a manifestation of the 
cooperative phenomenon by virtue of which the atomic magnets 
tend to be parallel. The Weiss theory has the merit of 
simplicity, for any phenomena can be explained by taking 
B+qM instead of B in equation (1.1-7). With this modi­
fication with B replaced by B+qM, eqn. (1.1-7) becomes

M = Ny [( Cotanh ^B+qM))_ (y(B+qM))-l] ..(1.1-10)

If we neglect saturation effects, and so make the 
ionapproximation

Cotanh UI5±3M2 . ( (B+qM).-1 = 1 (B+qM)Lotann n kT (|i kT ) 3u kT
\>approximate to small y(B+qM)/kT, then after solving for M,

the relation (1 .1-10) reduces to

X = 3M/9B =• Ny /3k(T-T )* c . ?. (1 .1-11)
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Here X denotes the susceptibility and

Tc - Nii q/3k ,,, (1,1-12)

Equation (1.1-11) gives an infinite solution, at T = T , and so the■ C '
Weiss theory immediately gives us a critical point or 
CURIE TEMPERATURE. Below Tc it is no longer allowed to 
make the approximation above because the moment ceases 
to be linear in the field strength, enormous magnetization 
can be obtained without the necessity of corresponding

ecoiapplied fields, and the behaviour becomes ferromagnetic.
This simple analysis furnishes a remarkably satisfactorjr 
description of the salient experimental facts. The two 
most important of the many successes of the Weiss theory are 
the following:

(i) The linear relation which is predicted bjr equation 
(1 .1-111 between the reciprocal of the suscepti­
bility and the temperature above the curie point. 
The linearity is on the whole quite well confirmedV?experimentally, As the temperature is lowered 
towards the curie point, the experimental curves 
begin to deviate more from linearity. The inter­
cept on the axis ^ ^ = 0, corresponds toi. e.



infinite susceptibility, or in other words, to 
ferromagnetism. Usually it occurs at a lower 
temperature T' , than the value T which is 
obtained by extrapolation from the linear behaviour 
at higher temperatures. The quantities 
and Tc l are sometimes called the paramagnetic

and ferromagnetic curie points, respectively.
The difference between them is relatively small 
representing a second order effect.

Cii) The other success of the Weiss theory is its
prediction concerning the variation of saturation 
magnetization with temperature below the curie 
point. The great mystery of the Weiss theory was 
how to explain the large molecular fields. They 
were supposed to be a manifestation of powerful 

lplinecoupling between elementary magnets, However, 
at the time? the only known interaction between 
them was the classical dipole - dipole coupling,
whose potential is
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where r .. is the distance between the two 
dipoles.

However, this interaction is far too weak to yield the 
coupling required by the Weiss theory. It gives a maximum 
value 4 it for the constant q in the molecular field qM,

The development of quantum mechanics was a great help 
in the understanding of ferromagnetic phenomena. Tn the 
first place it was accompanied by the Uhlenbeck - Goudsmit 
concept of electron spin. The latter has a ratio of magnetic 
moment to angular momentum equal to e/m instead of the 
classical e/2m. This behaviour is to be expected if most 
of the orbital angular momentum is largely destroyed by 
interatomic forces in the solid state leaving only the spin. 
The quantum theory of ferromagnetism is usually developed 
on the basis that the orbital contributions to the magnetic
moment are negligible. Actually they cannot be forgotten 
entirely as evidenced by the fact that the gyromagnetic 
ratios of ferromagnetics are usually nearer 1.9 than 2,0.

One thing which quantum theory has obviously done is 
to introduce a discrete series of orientations rather than

whereas the successful application of the
5requires that q be of the order 10 .
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a continuous distribution as in the classical Langevin 
theory. That is, the kinetic energy E of each magnetic 
dipole y in a magnetic field B, is given by

eftH = —y • B = — • B — — y B * L
where L is the angular momentum operator with eigei ues 

l = -s, -s+1, 0, 1 , s

O r...(1.1-14)

The partition function given by Trace s sS?(exp(-BH)) is

Q. = !  e ^ B<!
£--S

= e *=o

iX7
O Q--ByBs „ ^ByBt

If we put a = gyB, then&

...(1.1-15)

Q, = e-as(l-eC2s+1)“)/(l-e“ )

- a s
^  2s+l

( e ' ~ ^ _  e ~ ^ )
2 s+1

f  /  a / 2, —a / 2 a / 2.e '(e ' - e 7 )

_ Sinh((2s+l)/2)a 
yl Sinh(a/2)

m = 141" «i - ffln <?i
_ , 2s+l „ , ,2s+l. 1 „ , .a-,m = y{— Cotanh(— g— )a - ^ Cotanh-g}

... (1.l-15a)

... (1.1-16) 

... (1.1-17) 

... (1.1-18)
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The magnetization M is given by

M = Nm = Np Cotanh(-"T,-~- )a - ^Cotanh|-} A . . (1.1-19)

One important contribution of quantum mechanics is 
to unravel the mystery of the large Weiss molecular fields. 
The puzzle was solved by HEISENBERG (1926) who showed 
that the explanation is provided by the exchange forces 
characteristic of quantum mechanics. These interactions 
were a direct consequence of the restrictions placed on
the wave functions by the Pauli Exclusion Principle.
This principle requires that the electronic wave functions 
be antisymmetric with respect to exchange of space and spin 
coordinates of a pair of electrons, and it turns out that 
such a requirement makes the energy eigenvalues depend on 
the relative spin orientations of the electrons. This 
effect can then be interpreted in terms of an interaction 
which tends to orient the spin angular momenta (and consequently 
the magnetic moments) of the atoms.

This effect can be seen in the simplest case of the 
quantum mechanics of a two-electron system. Suppose that 
we have two electrons subject to fields derived from similar
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potential functions the Hamiltonian operator for the pair 
is then

H = - h 2 2
2E V

h2 „2
1 ^ 25 V2 + V O - W 2 )  +

2 2 
^ H° +' e

r 12 ^ 1 2

... (1 .1-20)
where the numbers 1 and 2 refer to the spatial coordi-

$ e p Snates of the two electrons and is the jaration of the
two electrons. If we begin by neglecting the interaction 
between the two electrons, we have a wave equation that
satisfies•

H~ip r Ewi|> ... Cl.1-21)

which can be separated into independent wave equations 
involving each electron. There are then solutions

ip = ^(1)* (2), E° = E.+E . . .  (1 .1-22)

where \p. and ip .are solutions for a single electron i J
moving in the potential V. If we apply first order per­
turbation theory to calculate the effect of the inter­
action, we find

2
E = E° + K C1H*C2) J- <K(1H (2) dr dr„ 

J r12 ij 1 ^
... (1.1-23)

= E + C
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where has the physical interpretation as the
average Coulomb interaction of two electrons in states
i and j respectively. This result, however, was obtained
without considering the Pauli principle, which requires
that the total wave function be antisymmetric w R e s p e c t
to exchanging the space and spin coordinates of the two
electrons. Quantum mechanics of electron spins shows
that two spins of s = ^ combine to give two states which
may be characterized by the total spin S1 . The singlet s
state (S^ = 0) is antisymmetric and the triplet -t state

,1 spin c<CS = 1 )  is symmetric in the spin coordinates, The appro­
priate total wave functions are, (SMART 1966),

^s = ^ * i ( 1Hj(2)+<l>j(.2)4»i(l)]* , E° = E1+Ej 

<l»t  = 7 ^ U i ( l ) ^ 2 ) - ^ j (.2)^i ( l ) l $  , E° = E i +Ej

is/SUr c
...(1.1-24)

where $ i spin function. These two functions are
degenerate as they stand, but we now recalculate the first
order perturbation contribution to the energy, we find

E = E°+C. .+J. . s ij ij
E , = Eu+C. .-J. . t lj ij
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where

J. . = ij **C1)<K(2) f- ^(2)*, CL) dr ..dr J r12 1 J x z . . .(1.1-25)
Ais the exchange energy of two electrons in states i and j ,

DIRAC (1928) showed that for the special cases of 
localized electrons in orthogonal orbitals, the

\ yaccthe Pauli principle could be taken into 
to the Hamiltonian a term of the form

effect of 
ount by adding

E -J. . [75- + 2S. . S .i<j u  2 1 js> ... (1.1-26)

This result suggests that the spin-dependent contributions 
to the energy arising from the Pauli Principle may for some 
purposes be regarded as caused by two body spin-spin inter­
actions of the form

-2 E J. .S.-S . 
i<j 1J 1 J

...(1.1-27)

This operator is known as the Heisenberg Hamiltonian although
its form was first deduced by Dirac and the first extensive 
use in magnetic theory by Van Vleck.

J\j is called the exchange integral and in some 
situations super-exchange integral. The word exchange
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appeared because the symmetric and antisymmetric wave 
functions describe the state of electrons that are inter­
changed. The term exchange interaction emphasizt hat
the structure of the spin Hamiltonian is such that electrons 
are as if coupled through some specific interaction whose 
strength is a function of the relative orientation of the 
spins of electrons, In this sense the* exchange inter­
action reminds us of the magnetic interaction. The 
exchange integral is a measure of interaction inten­
sity. J. . is predominantly negative, although cases of 
J\j>0 do happen, and it is they that explain the most 
spectacular magnetic property, namely, ferromagnetism.
For our work, we take J.,>Q,and our concern is not so muchT lj '

The basic requirement of a fundamental theory in 
physics is that there must be a Hamiltonian. The question 
has always been' What Hamiltonian is appropriate to display 
spontaneous magnetisation? The Heisenberg model suggests 
that spontaneous magnetization arises from a coupling of

positive bondv^T in low temperature ferromagnetism.
but on the consequence of the

1.2
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the spin angular momenta, rather than the total angular 
momenta JL. This particular assumption is of course exact
for atoms or ions with orbital angular momenta L ,
It is a reasonable approximation for most of the transi­
tion metal series but is inappropriate for the rare earths 
like cesium, ytterbium, lutecium and others; since L 0.

The crystal contains atoms with magnetic moments =% 
associated v/ith their spin angular momenta. The magnetic 
atoms are assumed to interact in pairs according to (1,1-27) 
and to be subjected to an external applied field. In this 
case, neglecting the translational motion our starting model 
Hamiltonian for the crystal is

H = -2 lj. . S..S. -gp'B £S. ... (1.2-1)
i<j - 1 "J B °i ^

where the first term on the right is the Heisenberg inter­
action energy and the second term is the Zeeman energy in 
an applied field Bq directed along the z axis. We 
introduce two additional restrictions on the Heisenberg model 
we consider only cases in which all magnetic atoms are 
identical and all magnetic lattice sites are crystallo- 
graphically equivalent. These restrictions are not arbitrary 
assumptions but rather are necessary conditions for the
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existence of ferromagnetism, It should be noted that 
this Hamiltonian neglects a number of factors which, are 
important in determining the magnetic properties of real 
crystals. As mentioned previously we have not included 
possible orbital contributions to the magnetic moment.
We have neglected the crystal field effects which give 
rise to magnetic anisotropy. We have also not included 
demagnetizing effects, which depend on the shape of the 
sample and may be quite important for systems near 
magnetic saturation. Moreover, the model is not suffici­
ently general to allow for ̂ o t r o p i c  or antisymmetric 
exchange interactions, These neglected phenomena may have 
significant effects on the cooperative magnetic properties 
of particular crystals but in general they are of secondary 
importance compared to the terms in (1.2-1). To try to 
Include everything simultaneously would result in a problem 
too cumbersome to handle by the techniques available.
Rather we usually concentrate on the simple model (1.2-1) 
and try to show that it is capable of explaining the most 
important properties of ferromagnets.

If we consider only crystals with a single kind of 
magnetic atom and all magnetic lattice sites equivalent,



22

then all nearest neighbour pairs have identical inter­
actions. As exchange interactions are expected to fall 
rapidly with increasing distance it seems likely that 
only a few sets of interactions need be considered. So

t neiwe restrict ourselves to the case of nearest neighbour 
only.

In principle, all the thermodynamic properties of 
the system described by this model with the above restric­
tions could be obtained by finding the eigenvalues of H, 
constructing the partition function and taking the appro­
priate partial derivatives. In practice this problem for 
a three-dimensional crystal is much too difficult to be 
solved by any frontal attack and various approximation 
methods of solution have been devised.

A way in which the Heisenberg model can be simplified 
is by changing the interaction potential. This is done
in the so called Ising model.

1,3 The Lenz-Ising Model
The Lenz-Ising model is an attempt to simulate the 

structure of a physical ferromagnetic substance with high 
anisotropy. Its main virtues lies in the fact that a two-
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dimensional Ising model yields to an exact treatment in 
statistical mechanics, It is the only non-trivial example 
of phase transition that has been worked out with mathe­
matical rigour (HUANG 1963),

In the Ising model, the system considered is an 
array of N fixed points called lattice sites that form 
an n-dimensional periodic lattice (n = 1,2,3). The 
geometrical structure of the latticeynay for example be 
cubic or hexagonal, Associated with each lattice is a 
spin variable S^(i - 1,..,,N) which is a number that is
either +1 or -1, There other variables. If

thS. = +1, the i site is said to have spin up and if 
= -1, it is said to have spin down. A given set of 

numbers {S^} specifies a configuration of the whole system.
The coupling energy is of the form -2JS .S . rather

Z 1  Z J

than S as it is assumed that there is only one free spin 
per atom. In a certain sense the Ising model is a purely 
mathematical creation as it neglects the interactions 
-2J(S .S . + S .S ,) between the components of spin per­
pendicular to the direction of the magnetic field, which 
are often important physically, except in highly anisotropic 
crystals.
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The One-Dimensional Ising'Model
The one-dimensional Ising model is a chain of N spins, 

each spin interacting only with its two nearest neighbours 
and with an external magnetic field Bq . The energy for 
the configuration specified by (S^,S2 , •, , ,Ŝ T} is

N -N ,E t = -J, E1S. S,. ... - B , S,I k=l k k+1 ok=l k
v VWe impose the b o u n d a r y  condition(
&

sm i  s si

The partition function is

... (1.3-1)

... (1,3-2)

N
Qr(Bo ,T) = E E rApxp[ Pk£1(JSkSk+1+B0Sk )I ... (1.3-3)

SNS1 S2

where each S, independently assumes the value ±1; we define,

. #
nk = +1 lf k+l
nk = -1 {* Sk F -Sk+1
and note that IS, = iz(S.+S. , 1) 

k ^ ^
From the following,
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sk sk+l nk • ss,k k
1 1 1 • 1
1 -1 -1 0

-1 1 -1 0
-1 -1 1 T- 1

the partition function is obtained as

Q t = £ Z Z expC3Jn, + 3B S. )all nk k o k
configuration
N
2̂-̂  £ exp(3Jn^ +3B <>

k
Then,

In Q = ZlnO l

< c
& = Z exp(3Jn + 3B S, ) 

nk *  °

Q = exp(3J+3Bo )+exp(3J-3Bo )+expC-3J)+exp(-3J)
And

or
Nm = N-

1 3 -| _
m = 6 JBln Q o
exp( 3J+3Bq ) exp( 3J-3Bq )

exp(3J+3BQ)+expC3J-3BQ)+2e-0J

As Bq -> 0,' m 0, and, there exists no spontaneous

(1.3-4)

(1,3-5)

(1.3-6)

(1.3-7)

magnetization.
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This result also holds for Heisenberg one dimensional 
model. Therefore the one-dimensional nearest neighbour 
Ising model does not exhibit ferromagnetism, although 
OJO,A. (1973) and others have shown that there exists 
ferromagnetism for a oner-dimensional Ising model, with 
long— range interaction. There is a considerable

nineliterature on the calculation of crystalline character­
istic values and curie points with the Ising model. Such 
treatments have the merit of being clear cut and rigorous 
for the assumed problem. However they have been confined 
primarily to one or two dimensional rather than three

wen wtdimensional lattices. Even where a rigorous calculation
with the Ising model is possible for the actual lattice 
pattern, the results should not be identified too closely 
with the actual magnetic behaviour of the material simply 
because of the inadequacy and arbitrariness of the model, 
This model of Ising and Lenz is too crude however to eluci­
date the low temperature thermodynamic properties of ordered 
magnetic systems, Fortunately another method, particularly 
adapted to the low temperature region was developed by 
Bloch (1930),
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1.4 The Spin waves and Spin complexes
The starting point of Bloch's attack is Slater's 

observations that the characteristic values of the 
Heisenberg exchange coupling can be rigorously determined
if the spins of all but one atom are parallel. The 
solutions can be interpreted as representing waves of 
disturbance in which the reversed spin is propagated 
through the crystal with various possible wavelengths,
The fundamental hypothesis of the Bloch calculation is that 
if there are k reversed spins, the solution can be 
obtained by additive superposition of k solutions in 
which a single spin is reversed. This will be an allowable
approximation only i

n is r
A is small compared with N, so

that the probability of two or more reversed spins being at 
the same point of the lattice is negligible. Hence the 
Bloch method of calculation with the Heisenberg model is 
only satisfactory in the immediate neighbourhood of complete 
saturation (M <= Ny) and consequently only at temperatures 
near absolute zero. This theory of Bloch explicitly assumes 
that the density of reversed spins is so small that the 
effects of obstruction and interaction between two or more 
Spin waves can be neglected. This is an approximation that



28

will certainly be good at sufficiently low temperatures, 
less good at higher temperatures.

At higher temperatures, BETHE (1931) made a thorough 
study of the effects of Spin wave interactions in a one­
dimensional chain of Spins, He showed that in addition 
to the elementary Bloch spin waves, there 1st excitations
in which a block of two or more reversed spins travel 
together through the chain to form a BOUND STATE called 
a SPIN COMPLEX. On the average, the energy of such a
state is less than the sum of the energies of free spin
waves,

1.5 Stoner’s method
The Heisenberg theory which have discussed is 

based on the Heitier-London model. This model represents 
a non-polar approximation. It supposes that the electrons 
responsible for ferromagnetism always remain on the same 
atom and do not participate in electrical conduction.cAThis is an idealization never completely realized in fact, 

oth er limiting case is furnished by the model of ommerfeld.Anoth
In this model of itinerant electrons, one supposes that the 
3d electrons circulate independently and freely from one 
atom to another. The resulting momentary shortage or surplus
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of charge on any particular atom makes the crystal 
instantaneously polar. Theoretical calculations from 
this point of view have been made by Bloch, by Slater 
and especially by Stoner, Evidently, the truth is some­
where between the Heiter-London model and that of
itinerant electrons.

The calculations of Stoner are based on a well defined, 
clear cut model, rt is assumed that the electron energy 
levels are attributes of the whole crystal rather than the 
individual atom, and can be handled by the Fermi-Dirac

jQrStatistics. A molecular field is used to represent the 
exchange interaction, The Stoner procedure can hence be 
characterized as the superposition of the Weiss molecular 
field on the Sommerfeld theory of electronic conduction, 
and depicts what is called collective electron ferro­
magnetism , < F

One is apt to wonder whether from the agreement with 
experiment or other considerations, one can deduce whether 
the non polar Heisenberg model or the polar Stoner one 
comes closest to reality, ft is impossible to say anything 
very definite on this subject.
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The actual intermediate case which is between the 
Heitler-London model and that of itinerant electrons is 
what we have attempted to explain in our work. Ins tead 
of considering the individual spins of electro ns, a 11 the 
spins should be taken as a collective because each spin 
interacts with several other spins simultaneously, thereby

values,causing some fluctuations in the spin^val

1.6 The motivation of our investigation
A new attack on the problem of Spin wave interactions 

was opened by HOLSTEIN AND PRIMAKOFF (1940). They con­
sidered the behaviour & a * hree dimensional ferromagnetic 
array of spins in an external magnetic field. They 
succeeded in defining a set of coordinates which describe 
accurately the quantum state of the system. In terms of 
these coordinates, the Hamiltonian of the system splits 
into two parts, one quadratic in the amplitudes and one of 
higher order. The quadratic part alone would give a theory 
of non-interacting spin waves, Identical with the linear 
approximation of Bloch, DYSON (4956) invented a general 
theory of spin wave interactions. In his theory, he 
defines two kinds of interactions. One is the kinematical 
interaction which arises from the fact that more than 2S+1
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units of reversed spin (S is the magnitude of atomic 
spin in units of h) cannot be attached to the same atom. 
The other is the dynamical interaction which represents 
the non-diagonal part of the Hamiltonian in his basic 
set of states. Dyson critizes Holstein and Primakoff spin 
wave theory saying that although the kinematical inter-

.teracaction does not appear, the dynamical interaction is so 
strong in their treatment that one cannot get rid of 
mathematical difficulties, CrPrior to Dyson's paper, several authors obtained 
correction terms in the expression of the spontaneous 
magnetization of ferromagnetism at low temperatures.
Among these authors, SCHAFROTH (1954) and HEBERG (1954) 
followed the ideas of Holstein and Primakoff, they were 
neither in agreement with each other nor with Dyson. 
OGUCHI (1959) has shown that the origin of their incorrect 
results are not in HolsteinT-and-Primakoff's method itself, 
but in their poor approximations. Oguchi in his work, has 
shown that a careful treatment of Holstein and Primakoff's 
method gives the same results Cto first order in 1/S) as 
Dyson's, Oguchi's treatment which is an expansion in 1/S 
is suitable for large S, We in our work study the inter-
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actions of spin waves in an Heisenberg model of a ferro- 
magnet using Holstein and Primakoff' s method. Our method

In chapter two, we outline the theory of spin 
waves and spin complexes, with emphasis on wave~waveoOinteractions#Spin waves being essentially spin fluctuations, 
we examine the Temperature Limitation on the spin waves.
The method of Holstein and Primakoff is outlined.

In chapter three, we introduce the spin wave-spin 
wave interactions. We realize magnons as ideal Bosons, 
with an effective electrochemical potential , We calculate 
the modification by p of the Bloch coefficient of T2/2 in 
the expressions for the spontaneous magnetization and of 
specific heat, in the cases of cubic ferromagnetic metals.

In chapter four, we apply our concept of effective 
chemical potential to the Hexagonal close packed ferro- 
magnets and calculate the influence thereof. In Chapter five, 
we calculate the additional effects due to the dynamical 
and kinematical interactions, And chapter six gives the 
discussion, summary and conclusion of our investigations,

2 < S < 2.
as we shall show is very suitable for small
1 .____ _ „
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As usual in many-body problems, our investigations 
use the language of second-quantization in quantum 
mechanics and of quantum statistical mechanics. Let us 
give an outline of the language.

............................................1.7 The Second Quantization Method
In a quantum-mechanical investigation of the system 

consisting of a large number of ider .tictf particles which 
interact weakly in an arbitrary manner we often use the 
the second quantization metho - his method is particularlyfietho a.
useful in a system where the number of particles is a
variable quantity,

If we consider a sy stem consisting of N identical 
non-interacting part icles for example, the free electrons 
in a metal, or the phonons in a crystal, the Schrodinger 
equation for a stationary state in this system may be 
written:en 
l [=&i*ll ̂ m  i + V(ri)U(r1 ,r2 , ,, . ,rN ) = E<Kr1?r2,. ,. ,rN )

(1,7-1)
where the first term refers to the kinetic energy in an 
operation form,
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Ai = aX 8yi a z.
... (1.7-2)

m is the mass of each particle. The second term represents 
the potential energy as a function of the position vectors 
r^ = {x ĵ > Yj[ > zi) E denotes the binding energy of the whole 
system in a given stationary state. The solution to the
above equation is usually taken in the form 

ip — ipq^(r^ )<^Q2^r2^ ' * * ’ f ... (1.7-3)

where labels a set of quantum numbers characterizing
a given stationary state. Every q^ represents a full set 
of quantum numbers which describe the state as occupied by 
an individual particle. The functions î q̂  are the solutions 
to the Schrodinger equation for one particle,

1 a A i + VI ri)ltqi(.ri) = Eq^q^r., ) ... d.7-4)

However,/the wave function (1.7-3) does not satisfy 
the symmetry requirement. In general, it is neither symmetrical 
nor antisymmetrical with respect to the exchange of the 
coordinates of any two particles. Consider for instance, 
a system of two identical particles. Clearly the possible 
wave functions are given by a combination which is either
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symmetric or antisymmetric

*s,a = 72* W W  4 ' M W V 1 (1.7-5)

where s and a correspond to + and respectively.
Each wave function is normalized to unity.

The above result can be generalized system having
an arbitrarily large number of identical particles, N. In 
this case we require for the total wave function to be either 
symmetrical or antisymmetrical with respect to the permutation 
of the coordinates belonging to any pair of particles. In 
the former case we say that* the particles cbey Bose-Einstein 
statistics, whereas in the latter case we say that the particles 
obey Fermi-Dirac statistics. The former particles are called 
Bosons which according to Pauli's investigations have an 
integer spin in units h Ce.g, photons, phonons, ir-mesons).
The latter particles are called fermions which according to 
the same Pauli's investigation have a half-integer spin in 
units h (e.g. electrons, nucleons, deuterons),

'To expose the problem of second quantization in a 
complete form we start from the assumption that the system 
of N non-interacting particles, say bosons, is subjected 
to an external field, Then every boson occupies one state



36

which belongs to the set of states whose energies are
Eq , E^, Eg... Let us denote the corresponding wave functions
with

Y q0 o  1 , ip(r } , q2 (r )

clearly the energy of such a general state is given by the 
matrix element of the single particle operator H^Cr),

V
q ^ ^ )  H1 (r1 ) î qiCr1)dr1 ..,(1.7-6]

whereas the interaction between the particles is given by
j Cthe matrix element of the two-particle operator ^22^rl ,r2^

E. = 1

V. . - U d<i
&

dr2 <P q1(r1) ♦q,j(r2)Hi2(r1,r2)4»qjCr2)i(»q1CPi) ... (1.7-7)

* 1jCr2)H12(rl-r2)*a-i('r21Wj(:r2) (1.7-8)

Let us assume that there are n^ identical bosons in a given 
state with the energy E.. . Clearly we must have £n. = N, 
wher^ the sum runs over all allowed states of the -system,
Since the Pauli exclusion principle does not apply to the boson
system, any individual number n^ may be as large as possible 
provided that the total number of bosons N is sufficiently 
large. -
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Therefore instead of characterizing the system by giving 
the set of energies and the corresponding wave functions we 
may characterize it by giving the set of energies and the 
corresponding occupation numbers, n^. Since the system 
is subject to an external field the particles are allowed 
in the course of time to change their positions in the 
configurational space and hence to make ransitions
from one energy state to another. It is therefore desirable 
to introduce a specific operational formalism in order to
account for the dynamical behaviour of the particles. For
this purpose we consider th^Jndividual wave functions as 
the amplitudes of a field the absolute magnitude of which 
determines the probability of finding the particle in the
state defined by a particular individual wave function.

$Hence we replace the wave functions <J>q̂ (r) and ip q^(r) by 
a set of annihilation and creation operators as follows:

xr) -v N 2^qi(r)aj.,

+ N 2^*qi(r)a^,
Cl.7-9)

where the operator a^ takes (annihilates) a boson from 
the state E^ to another state, and the operator a t  brings 
(creates) to the state E^ a boson from another state.
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[ ai? aj] *= [ a*, at] = 0

the second relation embodies the fact tha 
may be interchanged without changing t

10)

The above operators satisfy the following commutation 
relations

U i ’ a-5+I = 6ij

t any t 
he sign

functions.
To find a physical meaning for the first commutation 

relation in equation Cl.7-10), we introduce the state vectors 
which characterize the given state completely. The state 
vectors are designated as

I "o' nlVn2’ * * *>

two bosons 
of the wave

. (1.7-11)

to indicate that there are n.. identical bosons in a 
given state of energy E^,

The matrix elements for the creation and annihilation 
operators are most conveniently defined by

aiInD > ni ,...,n^,..,> — (n^+l)“ |nQ ,n^,...,n^+l ...>
x

a j | nQ , n^, .,,, n.., ,.. > — ( ^ 1  ’ * * ** f"l • • •>
... (1,7-12)

We may observe that the occupation number operator
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Ni = atai (1.7-13)

has the following matrix element 

N

equivalent

Ai I no ' nl ? ‘ ’ ni ’ ' * ̂ ~ nt I n0 • • i (1*7—

Now the first commutation relation has a set of e 
operational equations in the form

atNi -

- atNiai - w 1143a? - - N ^ N . - D C ^ - S )

14)

.,,(1.7-15)

atkaj = a+Ck-l)N (k-1) = N .(N.-1).,.(N .-k+1)i 1 1  l i iLi ai

rkTherefore the matrix elements of the above operational
identities become

i +k k |. . . | | . • . >

+k_k
(1.7-16)

Clearly the operator a ^ a ?  is a product of some operator 
and its hermitian conjugate fTherefore n^(n^-l)... (n^-k+l) cannot
be negative.
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Using equation [ Cl.7-6 - Cl.7-10)] , we may write the total 
Hamiltonian in the form (see NOVAKOVIC (1975))

H = EE.a.a. +, - i i i £(V. .+W„ .)a+a+a.a. 2(N-1) •' lj Ij' l j j l> J
C/r. (1.7-17)

v/here E . , V. . and W. . denote the matrix elements of
1J * v ythe single particle and two particle operators respectively. 

The summations are taken over all allowed states, so if 
N is sufficiently large then N/(N-1) may be replaced by 1.

If we put = n^, Ei = hwi
+ +a.a.a.a. = n.n., V. .+W. . = U.., i J 3 i i 1 ’ ij iJ

we have

r
and

H = Ehw.n. + i n.n. ... (1.7-18)i 1 J-  ̂ij iJ 1 J
The first term on the right gives the Hamiltonian of an ideal 
gas of quantum harmonic oscillators. The second term 
depicts the mutual interactions among the oscillators. 
Hamiltonians of this type are very important in many-body 
systems, And in our investigations, as we shall see, such 
a Hamiltonian is the starting point in spin-wave theory.



CHAPTER II

SPIN WAVES AND SPIN COMPLEXES 
In this chapter, we shall consider a collection of 

mutually interacting spin waves, and the existence of 
spin complexes,

2,1 Theory of Spin waves fj  \
One approach to the low-temperature thermo­

dynamic behaviour of ferromagnets is provided by BLOCH (1930) 
theory of spin waves. In the ground state of the exchange 
Hamiltonian (1.2-1) which will be realized at zero degrees, each 
spin has the maximum allowable value of , namely S,

A spin wave may be described as a sinusoidal distur­
bance of the spin system within simple cases, the amplitude 
at each magnetic ion site proportional to S-S^ .

Let us consider a linear chain, S = ^ with periodic 
boundary conditions, The Hamiltonian will be written as

H = - ^gPBBQEa^ - + + qfcTj)CSee Fluggae (1936))
(see Fluggae1 (1966) . (_2%1-J.)
where H has been expressed by means of the raising and

+ z 1lowering operators and of S^, and for S =
use has been made of the Pauli matrices a ,c and ax ’ y z

+where a = a + ia a = a -io , S = ~a. andx y a y —i a—x.
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o -
X

a =y

This Hamiltonian has the ground state eigenfunctions for 
N spins,

*o 0ll0120l3 N ^  (2-1 
in-down state.where a is Spin-up state and 3 is spin?

This is the state at zero decrees Kelvin, It represents the maximum
alignment of spins or complete magnetization. As tempera­
ture increases the system will be excited out of the ground 
state. The next state may be thought of as one in which the

th — ... - 4?spin is reversed.

, Jc'
^i aia2* ’ ’ ‘ ai-leiai+l* ' ’ ’ aN (2.1-3)

However, this <|k is not an eigenfunction of (2.1-1). An eigenfunction may 
be formed from a linear combination of <j>̂, each member 
of the combination containing a reversal at a different 
magnetic ion site

♦ k s f  t h (2.1-4)

In a demonstration basic to Bloch’s theory, SLATER showed
that each such combination is equivalent to a wave
like disturbance of wave number k, and that the allowed
values of k can be determined from periodic boundary 
conditions.
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The wave-like properties of the solutions (2.1-4) 
for the case of a linear chain are demonstrated as follows. 
Periodic boundary conditions are equivalent to bending the 
chain around in a ring so that the first spin is also the 
N+l Spin. Each spin i has two nearest neighbours 1+1
and i-1 with which it interacts through the exch

S N A
te tintegral J. We then set out to evaluat<

change 
he following

inner product, obtained from the Schroedinger equation
\r

<<t)j lH U k > = <(i>j iE I <l»k > . .. (2.1-4)

This yields

[ E+|(N-2)gyBBo + KN-4)J]Cj + J(Cj+1+Cj^a ) = 0 ...(2.1-5)

We may assume • solutions of the form

c i < i ^ ^ elkja> . ••• (2.1-6)

where a is the distance between spins. The periodic
k kboundary conditions require Cj to equal Cj+^, anc* hence 

the allowed values of k are given by

kaN/2w p 0,1,2,,.,,N-l . ( 2 , 1 - 7 )

The wave like properties of the solutions (2,1-3) is shown 
by (2.1-6), When the latter is inserted into (2.1-5) there 
results an equation relating the energy E and the wave
number k.
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E + |(N-2)gyDB + |(N-4)J+2JCoska = 0 b o (2 .1-8 )
which may be written as the following dispersion relation

.) ... (2.1-9)E - E = e. = hut, k k gPrjB + 2J(l-Coska t> o
where

E = -!NgPBB0 - 4NJ . . .  (2 .1-10)

is the ground state energy.
The energy is that required to excite the Spin wave
In three dimensions, the disperson relation according to 
BLOCH (1930) becomes

ek = gpBBo +
where

- expC^ik.r )n n

. . .  ( 2 .1- 1 1 )

(2.1-12)
Here r denotes the vectors to the z -n nearest neighbours.

We can with the above say that the dispersion law has 
been derived for a single spin wave in an otherwise 
perfectly aligned system of spin vectors. The question 
arises: Can a disturbance in a non-perfect system be pictured 
as a spin wave?

Bloch argued that this is reasonable at low temperatures 
and that the eigenstate of the ferromagnet should be very
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nearly a linear superposition of non-interacting spin 
waves of the form {2.1-4), Bloch's point was that the 
presence of one spin wave cannot seriously modify the 
derivation of the Dispersion law for a second spin wave, 
and similarly on up to n spin waves, provided n is 
much smaller than the number N

spin wave theory, and the thermodynamic properties oi a

The first study of the validity of BLOCH's super­
position conjecture was made by BETHE (1931) and limited 
to the linear chain with S =

Bloch's conjecture, if correct

ferromagnet can then
ties of superposed sp

<x-- with (2.1-2), the functions

...(2.2-1)

wit

. ( 2 .2- 2 )

Here the possible combinations are classified by total 
momenta k, which are good quantum numbers since H is
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translationally invariant, In analogy with (2.1-4) we now 
form

... (2.2-3)

Acv :to obtain the characteristic equation for the

(E-E°-2g,BBo-4 l+1 ( ^  ( ,!

= 0; j , not neighbours ... (2.2-4)
v  v

= j,* neighbours

We note that the right hand side of (2,2-4) is zero 
everywhere. If it were everywhere zero, a solution would
be

with

/"VJiKR„CjA R e Cos pr

R = 4(j+A)a; r = (j-Jl)a 
This yields the energy

E-E° = ck(p) = 2gpBBQ+4J Il-Cos(ika)Cos(pa)I

With
K = k+kv ; p « i(k-k')

... (2,2-5) 

(2 .2-6 )

... (2,2-7) 

(2.2-8)
it is readily seen that this energy can be written

e.(p) = 2gynB +2J(l-Cos ka)+ 2J(l-Cos k ’a) .,. (2.2-9)K d O
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that is, the energy is simply the sum of the energies of 
two non-interacting spin waves of total momentum K and 
relative momentum p. The non-zero right hand terms in 
(2.2-4) thus account for interactions between the two spin
waves.

solutions are

0k _ iKR t ,,4 ipr~,~ x1 J ikR_, N C. - e [N r e ^ f(p)l = e F(r)

with S T
n)

( 2 .2- 10)

(2.2-11)f(p) = fOp), *Cr) ̂  F(- 
where f(p) = Cos pr.
In our investigation w^are not interested in just two waves, 
but in a large collection of them. We shall show in 
chapter three that they constitute a system of spin 
complexes.

<&2.3 Temperature Limitation of Spin waves
The concept of spin waves and of magnons as quasi 

particles is not trivial, strictly speaking spin waves 
exist at absolute zero temperature. To clarify this
AKIN OJO (1988),in his work on temperature limitation 
on spin waves has shown that instead of considering the 
individual spins of electrons, all the spins should be taken
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as a collective because each spin interacts with several 
other spins simultaneously, thereby causing some fluctua­
tions in the spin values,

He has shown that the spin waves in a Heisenberg 
ferromagnet of curie temperature T , lattice constant a
and nearest neighbour z have at temperature T the dis-

2 °persion relation w 
that spin waves (magnons) are well defined quasi-particles 
if ir/2a >> k >> kACT) ~ Cz-1)T^/1 equivalent if T << Tq
and Tq ~ T^/(z-l}^. We proceed to outline this work.
The Heisenberg ferromagnet with the following Hamiltonian 
is considered

H 5 -JJ21 ZS..S. , ... (2,3-1)

2 2u>0 + CTk . From this is inferred

A
I 4 ’■J.L E S . ,S ,J-l n J n

where {Sni are the z nearest-neighbour spins to spin j 
and J is the binary bond.

The dispersion relations of the spin waves are known
to be

IT = 'TT' l-exp(ik.a)! = ,,, (2.3-2)

where |a| = a, the lattice constant.
The same dispersion relations are obtained if one uses the
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quantum dynamics

ihdS .
—  " |sd'HI - [sj ' V ’dt

where

and expand

H. - -JjS.,Sn ,

SjCt) = s^0) + T (t)

,1, (2,3-3)' 

... (2.3-4)

. V ... (2.3-5)

3?.Under the approximation = S°x = 0, S°z = S,

for all m, and that T\ :< v + lTjy’ Tj ~ exPCtk.Ej)
where R. is the positionSpf spin S.,J , M > J
one obtains

.tioi

= i(ij^)P(k)T = iG(k)T (2.3-6)

where the form factor is given by
. O - r
F(k) = t[ 1-expCik, a)I

^  ’Instead of considering one spin, all the spins were taken

... (2.3-7)

as a collective, and use was therefore made of the 
Bohm-Pines collective coordinate method in PINES and BOKM 
([1952), AKIN 0J0 argued that the collective coordinate 
method is applicable because each spin interacts with
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several other spins simultaneously adding that the inter­
actions are not of the binary collision type. At tempe­
rature T>0, the position R , of S . may differ from

3 J
constant R°,J

The spin density at x is defined by 
N

and
D ( x )  -  j l a V C x - R j ) ,  R j = y t ) (2.3-8)

<$d ( x ) = r r . s C x - R . )  j  J
is the spin deviation density • Then

pCk) = D(x)expC-ik.x)dx

= £ S . exp(-ikC-ik.R )

To first order

pCk) f= p°(k) + xCk). with S . = S? + T.,J J J
o yp (k)F £S exp(-ik.R ),

£T^.exp(-ik,Rj),

where

Tj " Tjx + iTjy’ " TxCk* + iTy(1°

f., (2.3-9)

.,. (2.3-10)

and define the expectation value of -r(k) by
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L(k) = <x(k)> = E<T.;> exp(-ik,R,)
J J 3

(2.3-11)

using equation (2,3-6) twice in the form

a r Y  = iG(k)<Tj>

we have
2

= -G2(k)L + E<T .> (-ik*H , )2exp(-ik,E .) 
dt j J J ^ *

+ S-ik,[ 2iG(k)R 
j

The second summation is zei

A  
v W exp(-ik.Rj)

8?. dR.
2iG(k)R.+R. = 0, for all  ̂j , R. = -A-3J ' J ' .1 dt
That is,

(2.3-12)

A
Rj(t) = Rj+rj exp(-iPt),fi = 0 or 2G = 2wQ ..,(2.3-13)

This shows ^  fluctuation of the positions of the spins.
We may use the Fermi-Dirac distribution at temperature T
to average the velocities to obtain

o( k R j f k2<V2> = k26/M , .,(2.3-14)

where 0 = kgT, kg is the Boltzmann constant, and M is
the mass of the collection of electrons that give rise to
each spin S, in which case if |S.| = S, then M = 2SM ,J J ©



52

M is the mass of an electron, and R. is to be taken ® J
as the centre of charge or mass of such a collection. 
Consequently, equation (2.3-12) becomes

d L^ = [-G2(k) - k20/M[L(k) 
dt2

w hich g iv e s  th e  d is p e rs io n  r e la t io n
to2 = G2+k2(e/M) = to2 + (6/M)k2

, . (2.3-15)

, ( 2 . 3 - 1 6 )

It is well known that in the standard method, the tempe­
rature effects come in only when one determines the thermal

v k 'average number of magnons , usl ng the Bose-Einstein distri­
bution at temperature T. But now, equation (2.3-13) shows 
that at 9>o the positions of the spins vibrate and equation 
(2,3-16) demonstrates that w depends on 0, Equation 
(2,3-16) also enables one to estimate the value of k

2and of the temperature for which the quasi particles (to~k )
2called magnons are well defined, Obviously, <o~k 

provided in equation (2,3-16)

“q » (  6/M)k2 ,.,(2,3-17)

In equation (2.3-7), to = 2JSk2a2/h . .
Hence,
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Tr/2a >> k >> h ( e / M ) a/2JSa‘ (2.3-18)

A
and .. consequently,

k„T = e << (2JSa/h)2M - C2JSa/h )2/2S?vI13 t'
are the conditions necessary to have magnons.
These equivalent conditions are more concretely stated 
with the use of the RUSHBROOKE and WOOD (1958) expression

(2.3-19)

k T .
= ^(z-D(Hx-i), X = s(s+i; (2.3-20)

for the cubic crystals, with

kB = 1.38xl0-23, Mg = 9.1x10 
a = 2.5xl0~10 m and S((S+1)2) < |  

We obtain the inequalities

6xlOS > > k > > k A and T<<Tq , where 

-3

tg, h = 1.0546 x 10"34JS_1,

T = 2x10 [ T /(z-l)lO i*c' (2.3.21)
Using these criteria, we compute the values of the temperature
T , below which magnons are well-defined quasi-particles, 
for several metals, These values are displayed on Table 2.1 
For the Hexagonal close packed crystals,

V c  „writing t—  - 0_
we have
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A
and

KpT i o i
= h ( - ~ ) 2/2SJa = f)T2ec/ M )*2Sa2k * T  e B e

To = [
6xlOS(2SMe) 2x2Sa2kB2Tc ̂ 2

hec
l,23xlO~3Cg£)2S3 

c

Table 2,1: Temperature T of some ferrometals
o r

romet
V

Ferrometals Transition Temp T (k) o
Number of

nearest neighbours z

IRON (BCC ) 
COBALT (FCC)

io4o
1300

44
28

8
12

NICKEL (FCC) ^ 3 0
292

7 12
GADOLINIUM (HCP) 0.4 12
DYSPROSIUM (HCP) 85 0.02 12

AKIN 0J0 showed that for iron C'T = 1040K, z = 8),
Tq - 44K; for f cobalt CTc = 1300K, z = 12), Tq== 28K;
and for nickel (T - 630K, z = 12), T = 7K.
We have shown that for Gadolinium (T = 292K, z - 12),
T = 0 r4K, and for Dysprosium (T = 85K, z = 12), o c
TQ = 0.02K, .
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For temperature T >>Tq , the second term in equation
(2.3-16) dominates and then w ~ k, so that the spin waves
are indeed waves. But then, the approximation S. = S^+T.J J
is expected to be invalid, in which case the second order 
terms which feature wave-wave interactions must be included. 

We can say that at T > > T q , the wave-wave inter-
actions becomes dominant and hence must not be neglected 
A way of accommodating them is by the method of Holstein 
and Primakoff, which we now ou1

S f
2 *4 The Method of Holstein and Primakoff

HOLSTEIN and PRIMAKOFF (1940) worked out a spin wave 
theory which includes the important dipolar and pseudo 
dipolar interactions. The general program is to treat 
spin waves as quantized particles subject to creation and 
annihilation operators. To this end, spin deviation
operators are introduced,

N = S-S„z z ... (2.4-1)

and the eigenstates of the Hamiltonian are expanded in
eigenstate <j> of these operators
where
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N£$n1 ' * ' - 'nN ~ V n ^  ' * ’nN , (2.4-2)

Here N }is the spin deviation of the atom, . and
n? is the eigenvalue.

ve thThe spin-raising and lowering operators have the 
following well known properties ■Sr

+ z  z  ,  &;^n = [ (s-s£z)cs+s£z+i)l3$n
£ 9s

V n  = [ ( s+s« ) ( s - s * +1» 2W 5
£ £

... (2.4-3)

... (2.4-4)

It is to be noted that the spin-raising operator lowers 
the number of spin deviations, and vice versa.

Creation and Annihilation operators, working directly 
on the spin deviations are now introduced.

V n t " \ + l

Vn, = (V * * n  -1

These operators have the property

a a = h
Z Z Z

... (2.4-5) 

(2.4-6)

(2,4-7)

and satisfy the commutation relations
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(2,4-8)

where

Prom the above equations the
are easily deduced.

h  -  [ 1 - < < V 2S>1
1
2

(2,4-9)

(2.4-10)

These equations, when inserted into a spin Hamiltonian, 
constitute the Holstein-Primakoff transformation.
If S~ is applied repeatedly until the state n^ = 2S is 
reached, f becomes zero and further spin lowering has no 
effect. Therefore, although strictly speaking the Bose

JL voperators a. are defined by the above equations in a space 
of infinite dimensions (n allowed to run from 0 to «*), 
the presence of f^ in a spin Hamiltonian operator will 
ensure that n^ stops at 2S as it must in a real ferromagnet.
Ano vay of deriving the Holstein-Primakoff transformation
is to assume from the start the form (2.4-9). The require­
ment that the spin operators obey their usual commutation 
rules then yields the commutation relations (2.4-8) for
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the a0 indicating that a correct transformation to creation
and annihilation operators of Bosons has been achieved.

The presence of the square root operator f^ A  this 
H a m i l t o n i a n  leads to many of the mathema-
matical difficulties of spin wave theory. is claimed
by Holstein and Primakoff that at low temperatures

s T(i) [ 1-C<N >/2S)I “ = 1 .,. (2,4-11)

where <N^> is the average over a statistical 
distribution of the ferromagnetic eigenstates 
ipE> of the expectation value of n^ in these 
states.
A further approximation made by Holstein and 
Primakoff is the neglect of terms of the form.

Cii) a„a„a a y m mZ Z m
.<>-•

>s N„N Z m

Ciii) NJlam

... (2.4-12)

,,, (2.4-13)

These terms are smaller than the retained terms in the 
expression for the Hamiltonian operator.

Spin waves are introduced by the following Fourier 
expansions in terms of wave vectors k within a Brillouin 
zone of the reciprocal lattice
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a £ = N "2 E exp(jF i k .  ) a ^ , afcak = nk ; a £ = a^ , (2  .4
k '

where the permissible values of k are determined by 
periodic boundary conditions.

With use of the commutation relations (2.4 -8), it is
easy to verify that

I ak • ak«
[ ak

wk,k’ 
^ 0

(2.4

and hence the spin wave creation and annihilation operators
*fcak are also Bose operators and the transformation (2.4-14) 

is canonical . The eigenvalues of operators nk will be 
the numbers of spin waves nk .

This Holstein-Primakoff formalism forms the basis of 
our further investigation reported in the next chapter.

Gr

-14)

-15)



CHAPTER III

INTERACTIONS I

By using a special expansion formalism we shall show 
here that spin waves, when quantized are ideal Bosons with 
an effective chemical potential effected by wave-wave 
interactions.

pansion

., , (3.1-1)

3.1 Spin wave - Spin wave Interactions an 
Formalism
The nearest neighbour exchange interaction model of a 

ferromagnet is described by the following Hamiltonian

V *H - -2J .E#S.,8„ + B epB ,£-S?j , £  j ’ Jt o” HB j - 1  j

Here Sj is the spin operator at the j*'*1 atom, N is the 
total number of atoms, g the Lande-g factor, the Bohr
magneton,the summation is taken over all nearest-neighbour 
pairs, and the external magnetic field Bq is directed along 
the z-axis.

The spin variables in quantum mechanics are operators 
which obey the following commutation relations

[S2 ,SZ] = 0, [SZ ,S+] = hs+, [SZ ,SJ= -hS_, [ S+ , S_1 = 2hSz
2 2 2 2 » t • (3 • 1 -1where S± = Sx ± iSy ,S = Sx + Sy + Sz

We take the simultaneous set of normalized eigenvectors
of the operators S and S which mutually commute as the
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basic representation. We denote the corresponding eigen­
values with S and M whereas their common eigenvector 
we denote with | SM> , Clearly, there are 2S+1 different 
values for M,

-S < M < S

and with AM = ±1, Also we have for h =
2S ]SM> = SCS+l)jSM>, 

S\SM> = M\SM> ,,, (3.1^2)

For a given value of S the eigenvectors |SM> span a (2S+1) 
dimensional space. These eigenvectors form a set of 
orthogonal unit vectors,

<SM|S'M’> - A(S-S’)ACM-M*) (3.1-3)

It is the task of quantum mechanics to evaluate the non­
vanishing matrix elements of the operators S+ and S ,
Here we quote the final result:

S+ | SM> = [ (S-MKS+M+1)] ̂ |SM+1>
SjSM> = [ (S+M)(S-M+1)1 * |SM-1>

... (3.1-4)

Instead of dealing with the quantum number M, we may 
introduce a quantum number n such that

n = S-M, An = -Am ...(3.1^5)
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The quantum number n gives a departure of the z component
S„ from the fixed values S_ = S. Using (3.1-5) the matrix

Z Z

elements for the Spin components in units ft = 1 becomes

S |S,n> p  l C2S+l-n)nI 2 |S,n-l>
1.S_|S,n> = [(2S-n)Cn+l)]2 |S,n+l> ...

Sz |S,n> - (S-n)|S,n>
(3.1-6)

The quantum number n may further be replaced by a set of 
creation and annihilation operators as follows:

n p a a
a+ |s , n> - (n+1) 
a |S , n> = /n

l)2|s ,a+l>
S,n-1>

(3.1-7)

where the operator a+ creates a departure of the z component 
Sz from the fixed value - S whereas the operator a 
annihilates a departure of this component from the fixed 
value -S. The minimum and maximum values for n determine 
the limiting eigenvectors |S ,n - 0> and |S ;n = 2S>,
These eigenvectors are characterized by

a Is , n 0> a+ |S ;n = 2S> - 0 (3.1-8)

We shall call the state corresponding to the eigenvector 
|S?n = 0> the vacuum or ground state.
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Using the introduced operators we may rewrite the 
matrix elements (3.1-6) in the form,

A AS+ |S ,n> = (2S) 2(l-e+)2a |S ,n> 
S_ |s ,n> = (2S)2a+(l-e_)4 |S ,n> 
S IS ,n> = (S-a+a)|S,n>

where

_ n-1 
e+ 2S e =

n
2S

A (3.1-9)

r
... (3.1-10)

We may present the matrix elements (3,1-6) in an alternative
operational form. We have

s + |s ,n> = (2S)2(l-a+a|2S)^a|s,n> 
SjS,n> = (2S)*a+(l-a+a/2S)^|s,n> 
S |S,n> = (S-a+a)|s,n>

(3.1-11)

Going back to our Hamiltonian (3.1-1), we express the Spin 
operators in the Jphns,

sj = Sj + iSy = (2S)ilj(s)aj,

j ^ r l s j  ■  C 2s)S  V s ) - ... (3,1-12)

Sj ' S" V i  '
where

fj(s) - (1 2S 1 (3.1-13)

and the operator a.a. = N. is called the number3 3 J
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operator and a. and a. are to be regarded as the creation 
and annihilation operator of the Spin deviation, and they 
satisfy the commutation rule

+ +a . a „ - a . a „ = <$,„ J A j £ jA

as demonstrated in Appendix A,
Using these operators, the Hamiltonian 
written as follows,

j ,*•H F -2J 41 Sjs* + slsn + S^sX-!K'
or

(3,1-i) can be

ognB jl!sj (3.1-15)

H = —2J z |[2Sajfj(s)f)lCs)a£-2Sajaj+aJ a ^ a j  
j > ̂

(3,1.-16)

Bq is the imposed magnetic field which we set equal to zero 
J>0 is the binary bond, and we assume that there are N 
spins in volume V , each with z nearest neighbours. 
Expansion Formalisms

Several authors have used the above stated Hamiltonian
and expanded f.(s) up to some order, and thereby obtained3
spin waves as quasi particles which obey Bose-Einstein 
distribution with zero chemical potential.
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NOVAKOVIC (1975) expanded

fjCs) -
1 - a.a .J .14S . ( 3 . 1 - 1 7 )

whilst OGUCHI (1959) went a step further. He expanded

^  . . .  ( 3 . 1 - 1 8 )

These expansions are good enough for large values of S.

+ + +a .a . a .a ,a.a .
f r s) = l — —_1 _ _2_j— J— si
J 43 32S2

But for small values of S, we have discovered that in order

to take into account the complete ^vave-wave ihteraction, Oguchi's
expansion is not sufficient,Within the wave wave interaction
approximation,neglecting wave-wave-wave and wave-wave^wave-
wave interactions,etc,f .(s) must be expanded to all orders,
and the two- product terms Cata.) in f ,(s)f (s) collected.J J *
Surprisingly the infinite series, in the two product terms, 
has a compact form.

Noting that,

Cl-xl® =^4^/2 -  x 2 / 8  - X 3 / 1 6  ^ 5 x 4 / 1 2 8  - 7x5/256+ ...
^ ^ l - R ( x )

N Jand putting a. = a, a f b, for convenience, we obtain J £

, C3,1-19)

+ + + .+. + + ̂ -\ _ -a a a aa a a aa aa a
fj( )  “ -2T2S) ~ ----- 75 ~ ------- ~8(2S)‘ 16(2S)'

.., (3,1-20)
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We notice that every term in (3.1-20) contains a two product
+ + + + +term a a. Take for instance, a aa aa aa a, and use the

commutation relation

to see that
[ a,a I = 1, C3.1- 2 1 )

a aa aa aa a = a (1+a a)(l+a a)(l+a a)a = a a+...
. ,. C3.1-22)

We take only these two product terms in equation (3.1t20),
because in equation (.3,1-16) a+f.f a makes such terms. J j ~ *
become 4-product terms, which are the only ones necessary 
in a wave-wave interaction approximation.

With equation C3.1-22) and others like it, fj(s) becomes

1 + — -— „ + ----— ^ + ,.. )a+a (3.1-23)
^*b) ■ 8(2B) 16(2S)d

= 1—R('2g )a a
where

“ (1- = -A < 0 ... (3,1-24)

Thus, the operator f1 is approximated by 1+Aa a, andJ

f f = (l+Aa+a)(l+Ab+b) - l+Aa+a + Ab+bJ ^ ... (3.1-25)

up to the two-product terms, Consequently,
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H = -J j£e[2Sa^l+»a*aJ+Aa^a|t!alt - 2SaJaJ+a*aJa+a), I .. . (3,1-26)

Using the Fourier transformations

ak = N 2Eexp(-ik )a^; aT = N~2rexp(ik )â ,,, (3,1-27)

where k denotes a reciprocal lattice vector and N is
the total number of ferromagnetic spins, i Fourier-

,,, (3,1-28)

transformed Hamiltonian, we have expressions like
v

J(k) = EJ(j-£)exp[ ik(j-?,)l f= J(k)* = J(-k)

Such expressions are calculated in Appendix B for crystal 
lattices having a cubic symmetry and Hexagonal symmetry.
As k -*■ o the expansion is given by

J(k) - J{1—(ka)2/z + A ( Q K k a ) 4-BC«J.,0)(ka)6, ,, ,} ,.,(3,1-29)

for the crystal lattice having a cubic symmetry; ,,, 
z denotes the number of nearest neighbours, a is the lattice 
constant, and J denotes an effective exchange integral.

We can now transform every term appearing in the above 
Hamiltonian with the help of the fourier transform (3.1-27)

EJCj-O *= zNJ ,.. (3,1-30)

2SEJ( j-£)a.a^ = 2SN 4EJ(j-Jl)a^aj_,expi(k.j-k' .&)

- 2SN-1i:zJ(k)a^ak+pexp(-ip,«,)
= 2sEzJ(k)akak ,,, (3,1,-31)
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where we have used the substitution k* = k+p and
N if p = 0

Eexp(-ip.£) = NA(p) = 
z

( 3 . 1 - 3 2 )

0 if p f 0

This follows from the translational property for the 
reciprocal lattice vectors, Also the following relationship
holds

EJCj-Oa^aj = N'~1i:J(j-Ji)a^ak ,expl i(k-k') ,Rl
= £zJa£ak ,,, (3,1-33)

We also transform the remaining three terms in (.3.1,26)
which depend on four operators. The first of such terms 
is equal to

Z J(j-£)a*a .a*a = 
all j,l 3 J *

r j,< >

all j, all k
J(j-^)a^ak,â Mak,(, Cexpi(k. j-k', j

kM , j^k’*’' ,*))
Here we introduce the substitution

k" = k ’+p’, k"’ = k+p,

which leads the above exponential factor to 

exp[ i(k-k’) (j-fc)Ix exp[ i(p-p'). «,I . 

and the above term becomes

J(k-k’)a*a. ,a* ,a, x exp[ i(p-p'). fcl= N 2 Z
k,k',p,p' lr t ' k ' + p ,ak+p
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The sum over £ may be performed giving the
factor

NA Cp-p'),

therefore the above term becomes
, O - T

= N k j , _ pz'( W , | > A ' V tp ' V P

There are two important contributions coming from the 
above term one with p = 0, the other with k = k r. The

vformer contribution is equal to

T-1 + + 5c,= N * E zj(k-k')aka^,akak , i  
k,k

hThe latter contribution is equal to

N E zJCk-k^a.a, 
k,k» k k

... (3.1-34)

- N~^ E zJa a. a, , + N-1 E zJa,+a, , A(p)
k,P v y  k k+p k,P k k+p

neglecti

(3,1-35)

By neglecting the second sum in equations (3,1-34) and 
(3,1-35) we finally obtain

E J Cj-£ Ja^a^a^a^ = N_1 E z[ J+JCk-k*)Ja^a^,akakf ... (3.1-36) 
j , £ k , k '
Using a similar set of transformations we arrive at the 
result

■ * j«-*)aK aAJ i ~
_ *T-1 + +— N E z[ J(k)+J(k')Jakak ,akak , (3.1-37)

k , k {
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Now we can write the Hamiltonian in the transformed form 
as follows

H = EQ+2szZ:(J-J(k))a^ak

+ N_1 E 4 J(k)+J(k' )-W(k-k')] +z(«-l)[ J(k)+J(k')] + +
k,k< ,

•«• C3.1-38)
' ^ V k ' Y V

Here Eq stands for the energy of the ground state

EQ = -zNS J

If we put k ! = q and we write the above Hamiltonian as

H-E - EA. n, + N"1 E V, n, n + N^1 E W,
0 k k k k,q k<l k ^  k," k<J k 9

E W,._n,.n,
q

C3.1.-39

= A + B + C
where

Ak = 2SJz[l-YtklI 
Vkq = zJ[ YCk)+YCq)-l-YCk-q)] 

Wkq = y(k)+Y(q)l
and

Na ^VxO) = 4si ^ 4sa-Cl -

YCk) = EexpCik.a)/z, a = |a|, a*3 = V /NQ ^ Oa
we have nk = akak ,
The first term Ak gives the energy of the elementary 
excitations at zero temperature exactly, so hw = Ak is a
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dispersion law. These elementary excitations are called 
agnons, and the energy of a single magnon is just A^ ♦ 

In the limiting cases where k->-o, the dispersion law 
for Magnons is

A(k) = 2SJa2k2 « liw = Fk2 ,,

The second and third terms of expression (3,1-39),
. .  .

(3,1-40)

B and C,
respectively describe an interaction which is often called
the magnon-magnon interaction or Spin wave Spin wave inter­
action,

,.2 2
With the expansion y(k) = 1 - k a to order

2 2k a , in equation (3.1-39), the second term <V^> is zero on
averaging over an angleCand this is why we shall need to expand 

4 4Y(k) up to k a ),for the cubic lattice.
Writing out the third term of expression (3.1-39) we

have
C E (ex — 1)[ 2z-k2a2-q2a2] n n 

kq K q
(3.1-41)

To this order of expansion of y(k) the effect of the wave- 
wave interaction is included in C as encapsuled by a(s). 
Rewriting our Hamiltonian, we obtain

H = E{[ 2JSa2+(a—1)^| <n„>Ik2+ (g~ - ^ <[ 2z-q2a2ln„>}nN
• • t (3.1-42)
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Or

where
H = Z(^k -y)n

k K

2 2 <nn > 2Fq - 2JSa +(a-l)Ja = 2JSa +FX

~ 2JSa = F
(a-1) T f 0 2 2,= - M ■ - J<[ 2z-q a 1 n >N ' * - - -q

In each case . averaging in a 
Bose Einstein distribution

f(q) __1 8?
exp(gFq -gy)-l

&

( a .

(a

is done over the

(3.

3.2 Chemical Potential in Spin wave Interaction Theory

Expression^ ('A. 1-43) which follows from (3,1^42) shows 
that there exists an effective chemical potential y .

For a weakly interacting system, in the second 
quantization formalism, the Hamiltonian

H = EA, n, + , T.W, n, n k k k k , q k q k q , . . (3

Note that the part of <wjCqnq> that is independent of k, we 
have called the quantity y, so that

h = £ U k-y)nkk
= A, +F- k k k 1 ... (3,

1-44)

1-43)

1-45)

2-1)

2- 2 )

And the grand partition function is



73

-3(X -y)n
Z = ji z e K K = nk n, k i-exp(-3(Xk~y)) ... (3.2-3)

which gives the Bose-Einstein distribution

<nk> = expg(Xk-y)-l

Thus the system behaves like an ideal Bose gas of chemical 
potential y. For this system we proceed to find out the 
nature of y (analytically and numerically).

Rewriting y explicitly we hâ

j O
y = (1-a)^ <[2z-q a ] n^> ... (3.2-5)

According to BOGOLIUBOV and SHIRKOV (1959), we make a 
transition from a discrete momentum representation to the 
continuous momentum representation by using the prescription

... (3.2-6)

y = ( 1-a ) J[ 2ZV
2tt2N

2 , q do a2V f 4. q dq
o

2 - 2 I : "" 9 'exp3(Fq -y)-l 2tt N ’ exp3(Fc -y)-l
... (3.2-7)



74

— ---  = I q2exp(-g(Pq2-y))l l-exp(-g(Fq2-y)).r^iq
2it“N jq exp$(Fq“-y )-l 'q 2ir N
V f

V f 2q
2ir N

~ e~mB(Fq -P)
m=l dq

m$p« e
mil 3/2 T T 0 4v Ci>*Cm6F) ' 4tt N

and putting

<<? (3.2-8)

_ > 7T > 1
F l4'~2= 0,022, t b P = 2JSa‘w

47T
we have,

, 1 V  , V r£ 
N iir2N J

q2dq ^  = t3/2„ » emSp= t ' r r
q " 2ir"N £ exp gCFq"-ji)-l 

Equation (3.2-7) becomes

m=l 3/2 m '
(3.2t 9)

y ** 2(l-a)rzJt3/2m|^expCSpm)/m3^2

mey rx 5/2 - e1̂ .
mil m 5/2I (3.2-10)

, . ,(3t2-ll)

Obviously y<0 , as expected of Bosons. With | y |  = u, and 
for very large f5, we may approximate exp(-mgy) for some 
large L, by

u = (a-l)2Zr J t3/2 < V >  - 1_ - ^ ^UL m=l mL+3/2
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u = [i2zll£5]i 2jS t s GCalkgT

That is,

... (3,2-12)

approximate solution 
is the EFFECTIVE 

ELECTROCHEMICAL POTENTIAL in the Bose Einstein distribution

M = -G(a)kBT

Equation (3,2-12) gives the 
to equation (3,2-10), p as we can see

that governs the corresponding quasi-particles, with the
2 2 2dispersion relation hw = Fk = 2JSa k .

Thus far, we have been able to show that in a consistent
*j Woo 1expansion of fj(s) = (1 - up to wave wave inter­

action only, for Heisenberg ferromagnet of N spins in a 
physical volume VQ , each of spin S, with z nearest neigh­
bours, bond J>0, the spin waves called magnons at temperature 
T are Bosons with effective chemical potential y ,
Instead of the above approximation, using a computer, we 
have solved numerically equation (3,2-10),

Writing
w ̂ 3

we have
w = 2(a-l)rzx^/^ ^exp(-mw/2Sx)/m^^ ,,, (3.2-13)

neglecting smaller terms,
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Using iterative technique, w has been solved for the values 
of t between 0 and 0,50 and graphs of w against t is 
plotted and shown in Figs, ( 3 , 2 - 1  -  3 . 2 - 4 ) ,

By the method of least-square-error curve f: 
we obtain the following expressions of w, in terms of 
x for cubic lattices, for example, the simple cubic,

wbody centred cubic and face centred cubic,
. v(i) Body-centred cubic (e.g. Fe) with s = §, z = 7,5

w = - 1 , 8 8 9 x 1 0 ~ 3 + 0 , 1 6 0 t + 0 , 2 3 t 2  *  0 . 1 6 t + 0 , 2 3 t 2

(ii) Body-centred cubic (e.g, Fe) with s = J, z = 8 
w = - 1 , 9 7 4 x 1 0 ’_ 3 + 0 , 1 6 8 t + 0 , 2 4 t 2  =  0 . 1 7 t + 0 . 2 4 t 2

, , ,  ( 3 , 2 - 1 4 )

( 3 . 2 - 1 5 )

(iii) Face-centred cubic (e.g, Ni) with s = f, z = 12 
w = - 2 , 5 6 7 x 1 0 - 3 + 0 , 2 2 8 t + 0 , 3 0 t 2  = 0 . 2 3 t + 0 , 3 0 t 2 , . .  ( 3 . 2 - 1 6 )

(iv) Simple cubicu with s - ,6, z = 6 
w = -8.70

(v) Simple cubic

1x 10-4+6 . 80x 10'~2t+0 . 12t2 = 0 , 0 6 8 t + 0 .12t2
, , ,  ( 3 . 2 - 1 7 )

ic, with s = .3, z = 6
w « - 5 , 6 7 4 x 1 0 - 4 + 4 , 2 8 x 1 0 " 2 t + Q . 0 8 6 t 2 = 0 , 0 4 3 t + 0 , 0 8 6 t 2

(vi) Simple cubic, with s = ,9, z = 6
w - - 4 , 8 9 4 x 1 0 _ 4 + 3 , 6 4 x 1 0 " 2 t + 7 , 6 4 x 1 0 ” 2 t 2  

(vii) Simple cubic, with s = 1,5, z = 6

, , ,  ( 3 , 2 - 1 8 )

0 . 0 3 6 t + 0 , 0 7 6 t 2

... (3.2-19)

w = -2.708x10 4+l.95x10 2 t + 4 . 5 9 x 1 0 " 2 t 2  =  0 . 019t+0 . 046t2
( 3 . 2 - 2 0 )t « f



77

Fie. 3.2,1: Graph of Chemical ^otential/Exchange integral
W against reduced temperature.

0

REDUCED TEMPERATURE

T
0.4
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Fig, 3,2.2' Graph of Chemical Dotential/Exchange integral
W against reduced temperature

REDUCED TEMPEJWTURE
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Fig. 3.2.3: Graph of Chemical Potential/Exchange integral

W against reduced temperature.

REDUCED TEMPERATURE
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Fig. 3.2.4: Graph of Chemical Potential/Exchange integral
VT against reduced temperature.

5-1/2:2-11

0.2 0.4
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Fig, 3,2,5; Graph of Chemical Potential/Exchange integral
W against reduced temperature.

5=1/2:2=12

REDUCED TEMPERATURE
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(viii) Simple cubic, with s = 1,2, z = 6
w = - 3 . 4 8 9 x 10~4+2. 54x 1 0" 2t +5. 72 x 10 2 t = 0 , 0 25t +0. 057T 2

,..(3,2-21)
We see that in each case, w may be written as

2W = W^T + WgT

G(a) = 3 |p[ = w^/2S,

so that G(a) from equation (3,2-12) becomes

3,3 The Spontaneous Magnetization and Specific Heat
Having found the nature of the effective electro­

chemical potential y, we ar&jinterested in finding out the 
effect of y on the coefficients of t in the expression 
for the spontaneous magnetization as well as on specific 
heat at low temperatures.

The spontaneous magnetization is defined by a thermal 
average of the z component of the magnetic moment and 
summed over a unit volume of the crystal,

<nk>
M(T) p H(0)[1 r I ,,,(3,3-1)

M(T) - M(o) = <5M(T) 

„ <Pk>
NS

V
(2tt)3NS

2 dk ... (3,g,-2)
exp gCFk -y )-l
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The third order approximation of F leads to 

F = 2SJ[ (ka)2-zA(<}>,0) (ka)4+zB(<j), 0 ) (ka)6+. . . I . . .  ( 3 . 3 - 3 )

A(<}>,0) and B((j>,0) are evaluated in the Appendix C putting 
equation (3,3-3) in (3,3-2), we obtain

<nk>_ y 
k NS "  C 2 „)2NS

dfi k2dk
o expf — -zA(<J»,0)-OElL +zB($ , 6 ) C-~i -  -yl-l

where y = y/k,T

 ̂ NS k (2tt)
nk-  V ' | em6p I lUj*

**3 J m=1 i e._, k2

(3,3-4)

'2_2 ,6
exp[^-- zA(<)>,0 )-— ■-■■- +zB(<j>,e) ]  -1

(3,3-r5)

Expression (3,3-5) is a very difficult integration, so we
apply the technique of NOVAKOVIC (1975) by introducing 
the following substitutions.

S = C[l-Dk2 + Ek4] k2

C = —

D = zA(4>,0)a* (3.3-6)
E = z B C , 0 )a"

According to NOVAKOVIC (1975), we obtain
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-S . DSCk = S(l+D(g + ^  )-E(^ + ~ 3 ~  + —c 0 c 0
S2 . 2DS2 , D2S2. .„2 ,S2 , 2DS2 . D2S2-)+D C—rr +’“5 T — Tcr cr )1

(3.3-7)

k2 = ±[S2+zA(<(>;e) S2+(2z2A20 M l - z B U , e )  2S3+, , .] <4. , (3.3-8)
1

k2dk = --- g y 2 t 1+ |[zA(<j>, 6 ) tS + (8 2A2(<J>,6)- ẑB(<|>,e
2CT

Equation (3,3-5) becomes

<nk> r 2 TT

k NS (2tt)"NS3iv.q J dko o
d()) Sine do k'

Substituting (3,3-9) in (3

2tt tt
d<t> A(4>

o

J exp(S)

° tS>
,G)Sin0 de

nd writing

o

2 it 7r
f 0d<j> J A C ^ 0)Sin0 de

2 TT IT

we ob

L3 - J d$ | B(<}>, 0 )Sin0 de
o o

5̂
" V
NS

V ^ - 3 / 2 ^ ^
( 2tt ) °NS m 3/2

2tt r(w) + T-zL.rfe)5. e-my
4 ~ * V V2' 5/2m '

(3,3-9j

(3,3-10)

(3.3-11)

7 7 2+ (4z L2 - 4zL3)T(2 T +.♦.]
m ' « t ♦ (3.3-12)
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where r is the gamrr.a function.
The first three terms of expression (3,3-12) gives the. 
coefficients of T3/2 , T5^2 and T7^2 in the expression of

In evaluating (3,3t-12), we make use of y = ( = w^y2S

<5M(t ) - p rp3/2 p J. p rp7/2 _ „4
“ ir^T ■ 1 C2T + C3T + C4T

which has been evaluated in section (3,2),
The values of J are also needed for the various 

cubic structures, J is obtained from RUSHBROOKE and WOOD 
(1958) who arrived at the expression,

e„ = = i ( z - i u n s96 (z-l)(HS(S+l)-l) , , (3.3-13)
/

where k„ is the Boltzman's constant, T is the transition B ' c
temperature, z is the number of the nearest neighbours,
s is the spin va lues 
Writing

5s and J is the exchange integral.

kgT
2JS 2 ST (3.3-14)

With the substitution of (3,3-14) in (3,3-12), the various 
coefficients of T are obtained, and the effect of the 
electrochemical potential included. These have heen done, 
and the results are tabulated in table 4.2, Note here that 
the coefficients so computed are the lower bounds, because 
of the presence of spin fluctuations discussed in chapter two.
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We know that,

where
SjCt) = Sj + T Ctl

i(k .-wt)
T . (t) = ia,e J

S ■ Sj ’ <S/  * 5 • 
1 Jrwe have made use of s = g. The average distance is |a| 

The average bound is J, the average number of nearest
neighbours is z ,
The specific heat is given by

,C (T) = A <h> v 9T

■ ■<H> = N £E(T,k)<n,>; E(T,k) = (Fk -y)k<^
A rand the internal energy U(.y) is given by

where

a

(F k 2- y )

2tt N > expg(Fk -y)-l
k2 dk

V \ 'yk ak

expg(Fk2-y )-rl 2tt2M ) expg(Fk~-yi)-l

a

m
^F|r(gF)"5/2j: - ^yr(gF) 3/2 E ̂

m
mgy
3/2

.3-15)

.3-15a)
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_ 2JS 3r -5/2 5/2 T>r r„ -3/2, ,^3/2 „
"  ~~Q~ 2 ^ 2 j b )  E “ 5 7 2 ~  ~  ~cTU T S )  ( k T )  E 5 / 2^ m '̂ m '

... (3•3-i6) 
-hnBy

CVCT) = “  f h j S r 5/*k5/2 T̂ 2 - g  3(2JS,3/V/V /2 I ^

-Hngy
= (2JS)'a/2k5/ V / 2| ^  + 3vrB Ee

-Hngy
40 5/2• m ' 2Q

where
m 3 / 2  &

<j? ... (3.3-17)

= - V 4  = °-022» Sy = = YkT, |  = £rQ
4’” 'and here k . is Boltzmann constant. The second term of 

expression (3.3-17) is very small and may be neglected.
Calculations of the coefficients of T2^2 for the 

specific heat has been made for Iron and Nickel with cubic 
lattice structures, and the effect of y is significant on 
this coefficient (see table 4.2), We note that in eqn, (3.3-16)

U(y = 0) = ^  ^C2JS)~5/2(kT)5/2 " 1
m5/2

We now demonstrate that U increases with y

On U(y = 0) > U ( y <0)
* " ’ ~ “ " 1

The internal energy per spin is

U
N 2tt2N

2 2 (Fk -y)k*dk
C-l ... (3.3-17)

The number of magnons is
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n V ( k ak
2nJ2n N C-l ,,, (3.3-18)

o
where C = exp(3(Fk -y)) 
and
9 C on dC t-.2
97 = ~*C ‘> W  = (Fk ^ )C

9n
9 3

rV f ( F k 2 - y ) e k 2 dk

2tt2N Jq

9(U/N) = _-V _
3y '2tt2N o

(C-l)‘

k2 dk _ V _  B

C' 1 2,2

= -n-B 9n9 B

Let

9 B + n = a ( B )  or

&9n , 1  a (B) , n
38 ‘ —  ■ n("> = 0

. . .  ( 3 . 3 - la )

t » t (3,3—20)

,,, (3.3-21)

which has solution
B

n(B)-n(~) = a(B1)dB' (3.3.22

For large B, but finite,
B

n(B)-n(B-<$) = a(B')«B'
B-6

,,, (3.3-23)

with o<6<<3,
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By (3.3.19), we have

0 > n( 3 )-n( B-<5) -*■ a( 3)< 0 

That is

Therefore,
U(v = 0) > U(y < 0).

wave-This implies that the existence of wave-wave interaction 
and hence of non-zero n, gives rise to a lowering of the 
internal energy. In other words, the spin waves mutually 
interact in such a way ( * T  on the average they > -jWm bc>M.̂ c|
states called spin complexes,

C r



CHAPTER XV

THE HEXAGONAL CLOSE PACKED FERROMAGNETS 
In this chapter, we apply the formalism used in 

Chapter III to the hexagonal ferromagnets,
4.1 The Hexagonal close packed ferromagnets

The ferromagnetic elements that have U ^ s c o v e r e d  
so far apart from the alloys includes Iron, Nickel, Cobalt, 
Dysprosium and Gadolinium, The first two have body 
centred and face centred cubic lattice structures respectively

'S vwhile the remaining three have Hexagonal close packed 
lattice structures,

In this section, we want to find the dependence of the 
coefficients of tv on the electrochemical potential (p) in 
the expression of spontaneous magnetization and specific 
heat for ferromagnets with Hexagonal close packed structures. 
This of course involves finding the correct expansion for 
the terms encapsuled in the dispersion relation.

For the cubic crystals, 
the Hamiltonian is written as

where
H = E(Fk «-*p)n, k k

F - 2zS[ JVJ(k)I/k"

. (4,1-1)

,,, (4,1-2)
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J(k) * I J l Jj»expUk-(Rj-Re>1

- 1 i1iiJj*Coslk-tsr B »>I

Let us put Rj = (0,0,0) and R^ <= (x^, , z£

(4.1-3)

The Reciprocal lattice vector is defined by

■ ... x Tk = kSin<i)Sine 

y

k = tkx ’ ky ' kz> 
k: = kCos<j>Sine

k z - kCose

The nearest neighbour distances are given in Tables (4.1)i 
to (4,l)iii.

Table (4.1)i - Nearest neighbour Distances on a Simple cubic
< o  attice in units a

2 3 4 5 6

y o
-1 0 0 0 0

0 1 r-1 0 0 See Pig,(4,l)i
z 0 0 0 0 1 -1
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Fig. 4.1i: - A given atom with* six nearest neighbours on
the simple cubic lattice .

o = given atom at (0,0,0) 
• = nearest neighbours.
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Table (4,lii) - Nearest neighbour Distances on body
centered cubic lattice in units a/2

Table (4,liii) - Nearest neighbour Distances on a Pace
centered cubic lattice in units a/2

& 1 2 3 4 5 6 7 8 9 10 12
X 1 i -l -1

°< 0 0 0 1 1 -1 -1
y 1 -l l -1

3
1 -1 -1 0 0 0 0

z 0 0 0 0 1 -1 1 -1 1 -1 1 -1

Our esi

(See Fig. (4,liii)
> y
is of the nearest-neighbour distances on

a hexag close packed lattice in units of a, is shown in
the following table 4,l(iv),
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Table (4.1iv) _ Nearest neighbour Distances on an Hexagonal
close packed lattice in units of a.

6 8 10 11 12A
x 0 -0,5, 0,5, 0, -0.5, 0.5, 1, 1, -0.5, 0.5, -1, -1
y -0,577, 0.289, 0.289, -0.577, 0,289, 0.289, 0,00, 0 .722 , -1.154,-1.154

Q, 0.722
„ -1.632 -1.632,-1.632, 1.632, 1.632, 1.632, n A n A
z --2 ’ --2 2 ~ 2~  2 2 U’ U’ U> U’ U’ U<0^See our Pig. (4.1iv)

A TFor a simple cubic lattice,
1 zthe Fourier transform J(k) = ^ J . Cost k. (R ,-R )]O X, A. J ~ J

wr iting kx = k , ky = k and kz = k
= ^ [Cos kxa + Cos(-lcxaQ$

'  zCos(kya) + Cos(-kya) + Cos(kza)
Cos(-kza)J

= gfCosCkxa) + CosCkya) + CosCkza)].

For a body centred cubic lattice, 
the Fourier transform

J(k) = ^ [Cos(kxa-kya + kza)/2 + Cos(kxa + kya + kza)/2
+ CosC-kxa+kya+kza)/2 + Cos(-kxa-kya+kza)/2 
+ Cos(kxa-kya-kza)/2 + Cos(kxa+kya-kza)/2 
+ Cos(-kxa+kya-kza}/2 + Cos(-kxa-kya-kza)/2l
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Fig. 4.lii - A given atom with eight neighbours on the body

centered cubic lattice.

o = given atom at 00,0,0) 
0 = nearest neighbours
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11

Fig.4.1iii - A given atom with twelve neighbours onthe face centred cubic lattice

o = given atom at ('0,0,0) 
•= nearest neighbours



B
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, lv A given atom with twelve nearest neighbours on the

Flg' 4 - Hexaeonal close packed lattice.
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= g[ 2Cos(kxa+kza)/2Cos kya+2Cos(-kya+kza)/2Coskya 

+2Cos(kxa-kza)Cos kya+2Cos(-kxa-kza)/2Cos kya 

= J[ Cos Cos ^  Cos i p i

For a face centred cubic, 
the Fourier transform

J(k) = Cos(kxa+kya)+Cos(kxa-kya)+Cos(-kxa+kya) 

+ Cos(-kxa-kva)+Cos(kya+kza)+Cos(kya-kza)

+ Cos(-kya+kza)+Cos(-kya-kza)+Cos(kxa+kza)

+ Cos C kxa-kza) +Cos C^^a+kza) +Cos (-kxa-kza) I

= CosJr _ kxa , kya , „ „  kza'■ 'ZJ *7"7S~ + Cos 73T Cos /2

J(k) =• JT(k) = ££1 Co s  k,R = J
z

/

We proceed to obtain the fourier transform J(k) for a 
hexagonal close packed lattice,
For a Hexagonal close-packed lattice, we have

Jy
T 12 T 12

„r.Cos(k x +k y +k z„)£=1 v x £ yJ£ Z £ y

(4.1-4)
Cos(kxX£+kyyjl+kzZ£)

=  1  -
(k x„+k y.+k z„)' v x £ yJ£ z

2!
(k x.+k y.+k z„)

X £ Y £ Z £ ' 
2 ! + . . .
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(k x +k y. +k z„ ) v x £ yJ£ z £ 7
6! ’ ' ' (4,1-5)

To obtain J(k), we substitute the values on the table (4.1iv) 
into the expression obtained after putting (4,1-5) into 
(4.1-4). Taking each term separately, we have the following

1 12 (kxX£+ kvy£+ kzZ£)2 1 2--------------- *-----------12 £=1 2!

where
12 2 2 . ,2 2■ L 1y

(4.1-6)

D"(<f>, 0 ) (ka) - E1 (k x. + k y + k“z“ + 2k k x.y +’ - £ = 1 X £ y £ Z £ y X £‘ £+ k2z? +

2k k x„z„+ 2k kv.z.)X Z £ £ y ZJ £ £ '

i 12 (k x D+ k 1 yx £ y
12 £=1

where
ry»+ W  . i f J L ,! 12^24'
(C

4!

12

A"(<}) ,6 )(ka)

(4.1-7)

(4.1-8)

o W . ,4 _ ,.4 4 , 4 4  4 4  2t 2 2 2 x C1 2, 2 2 2A (<)>, 6) (ka) = |I1(kxx J + kyy£ + kzz£ + S k ^ x ^  + 6kykzy£Z£

V& 2, 2 2 2 . 3, 3 x .,3, 3 ± ,.3, 36k k x z„ + 4k k x v + 4k k x„z + 4k k x„y„ X Z £ £ X y £J£ X z £ £ y X £J£

+ 4k3k y3z + 4k3k x„z3 + 4k3k y z3) ... (4.1-9)y Z1' £ £ Z X £ £ Z yJ£ £ 7 ’ v 7
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6
1 12 (kx V  ky V  kz V  1 V 1
12 £=1 6 ! = T^C7^o)[ B,,(4>, 6 )Cka)^l

Writing B"( <f>, 0 ) (ka)^ = a+b

a = 0E.,(k6x? + k6y® + k6z6„+ 4, 2 4 2 ^ 4, 2 4 4, 2 4 2£=1 x £ yJ £ z £ 7k k z v + 7k k x„y„ + 7k lc y„x„ J z y £ x y £J £ y xJ £ £

„  2.4 2 4 ± ,,4,2 4 2 ^ „  4,2 4 2 , - . 5 ,  5  , . ,  5 ,  5

+ 7kXkZX£Z£ + 7kXkZX£Z£ + 7kykZy£Z£ + 4 k Xk ZX£ Z£

v V
+ 4kykx V t  + 4kykzy?zt+

SrQ1 3. 3 3 3 . Q, 3. 3 3 3 ^ 01 3. 3 3 3 ^ ...3. 2. 3 2+ 8k k x„y„ + 8k k z j n + 8k k x„z„ + 16k k k y„z„x„y x £J £ z y £,y£ z x £ £ y x £ £

+ 1 6 k 3k k 2 y z 3x 2 + 1 6 k 3k k 2x 3y- z2 + 1 6 k 2k 3k y ? x 3 z 0 z y x J £ £ £ x y Z £ y x  Z

i ni3, .2 3 2 1C. 3, ,2 3 2 ^,,2,2,2 2 2 2+ 16k k k znx„y„ + 16k k k y z x +18k k k x„y„z„ z x y £ £^£ y x £ £ y z x ZJ Z Z

+ 12 k 4 k k x 4 y„z. + 1 2 k ‘ck k y4x . z n+ 12k k k ^ x . y . z 4 x y z z J Z Z y x £ x y z £

and

12
b = £ - (2k3k x 3y + 2k3k x yf + 2k°k x 3z 0 + 2k^k x . z 3 + 2 k 3k y 3z.

£—1 x y Zy Z y x Z y Z x z £ £  z x £ £

0 1 5, 5 ^ 014.2 4 2 x ol4,2 2 4 01 4, 2 4 2+ 2k k z v +  8k k x„y„ + 8k k x„y„ + 8k k x z „  z y ZJZ X y ZJZ y X X Z £ £

q,4,2 2 4 q | 4, 2 4 2 q , 4, 2 2 4 , q , 4, , 4+ 8k k x„z„ + 8k k y„ z n + 8k k y„z„ + 18k k k x„y z, z x £ £ y Z J £ £ z y J £ £ Z X y £J £ £
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.,0,4, , 4 . 1Q14. . 4 . 101 3, 3 3 3 . - 01 3. 3 3 3+ 18k k k x„z.y. + 18k k k x„y.z„ + 12k k x„y„ + 12k k y„zny x z £ £J£ x y z £J£ £ x y y V i  l

1013,3 3 3 x 701 2,2. 2 2 2 2 , 3,2, 2 3+ 12k k x„z„ + 72k k k x„y„z„ + 44k k k x„z„y„ x z £ £ x y z £ ̂ £ £ z x y £ Vi

,.,3, 2. 2 3 ,,, 3, 2, 3 2 ^,3, 3 2+ 44k k k y„z x + 44k k k y„z„x + 44k k x.z„y. z y x J£ £ £  y z x J£ £ £  x y £ £J£
i

+ 44k2k2k y2z x2 + 44k2k^k x2y2z ) y x z J£ £ £  x y z

The fourier transform J(k) for an Hexagonal close packed

. (4.1-10)

lattice . is markedly different from that of the cubic 
lattice, ' „

Replacing F with F', for a Hexagonal close packed 
lattice, the transformed Hamiltonian is written as

dH = l(F'k2-y)nk
where

. .. (4.1-11)

F ’ = 2Sz J[ D" (<j>, e ) a^k2 - A"(<j>, 0 ) (ka)4+B"(<f>, 0 ) (ka)6+ . . .1 ... (4.1-12)

The quantities D"(<j),e), A"(<f>,e) and B" (4>,0) have been outlined and

evaluated in the appendix D.
We proceed to find the effect of the electrochemical 

potential y on the coefficients of in the expression 
of spontaneous magnetization and specific heat. As in 
eqn. (3.3-2)
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<nlf
' NS (2tt) °NS

k2 dk
exp(F'k — y)—1

... (4.1

This integration is of course not a trival one. We extend
our previous technique of doing it by writing

st= [D"((f>,0)a2k2 - A"(<)>, e) (ka)4 + B”( <f>, 0 ̂  :a)6]|
and ... (4.1
putting P = D"C<j), 0 ), C - 
H = B"($,0)a4z. Equation (4.1-14) bee

a2 2 9— , G = zA"(<f>, 0 )a ,Ffk = 2SzJS > T o
otnes

= C[ P-Gk2 + Hk4] k2 (4.1

Ck = 1 1  + ♦ s & i i . » i - ^ (i .■ + 2 %  + e V ) !CP2 Cp£j< p c2p2 CP2 C2p4o
G2f S2 (1 2G& G2S? ,1 
+ 72 1 ~2~2 1 + 772 + 72—? ) (4.1

CP C P

H )8?I
C2P4 p3c2

P2dk S* f 1 i 5G^  h 8g2^2 7 H s?i
k dk 2C3/2P3/ 2 ‘ ^

(4.1

2V>k dk =
A

s~ 2a„2, .2 2
2cG/2p8/ 2

[ ! + 5 zA"(j> ,9) + 8z A" (I.ejS^T
2 2D"2(*,6) D H (<f>,0)

7 B''(4.,0)ZT2a2- o 3 • • •D"2((b,0)
1 dSr

-13)

-14)

-15)

16)

.17)

• « « • » * (4.1-18)



104

Substituting (4,1-18) into (4.1-13) and by the techniques 
of numerical methods, we have been able to compute the first 
three coefficients of -Sm (t )/m(o).
The first term of -6m(x)/m(o) is A

22tt tt

(2tt)2NS
dS d<f>J 0 J j

Sin 6 Sa2 e-mgy
o o 2C3/2P3/ 2 

2 tt

( 2 it  )
^  T 3 / 2 r ( | ) m i l  T / 2 -  |  J [ D ” ( * , e ) l - 3 / 2 s m e d e d<j)

12 12
D"(4»,0) = (Cos<j>Sin0 )2£21x^+(Sin$Sin0 )2 ^ y ^  + CCose )2£|1zJl/24

AThe second term of -<Sm(T )/m(o) is
(4,1-19)

c» e
2tt

-my
mil m5' 2 42

5 f [ A,,(<j)>e)Sin9]o o [ D"(<f,,e)] 3/ 2
de d<j)

1 4 12 4 4 12 4 4 12 <A"(<M) = 24̂ Cos^Sin6) + (Sin<|)Sin0) ^ y ^  + (Cose) ĝ-jZ

12 12
+ (Cos<)>Sin6) Sin<f>Sin0 ^x^y^ + 4(Sin<|>Sin0)3Cos0 +

+ 6(Cos<))Sin0)2(Sin<j)Sin0 )2 £g.jX2z2 + 6(Sin<f>Sin0 )2(Cos0 )2 ^g^y^z2.2 12 2 2 2,„ _ ,2 12 2 2
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+ 6(Cos<f>Sin0)2(Cos0)2 Ê̂  x2z2 + 12(Cos0)2(Sin<|>Sin0)(Cos<j>Sin0)
" 12 2

A W i
2 12 2 2 + 12(Cos<f>Sin0) (Sin ŜinO )Cos0 + 12(Sin<()Sin0)

12 2Cos(()Sin0Cos0 ^  y (4.1-20)

12

The third term of -6(mCT))/m(o) is

(2tt)3NS
^ 2 *n h ^ Z  i4Z2f[ OX.

2 xn/Z [D"(
, 0)Sin0d0d<f> 7z f

where

.6 12_6

[D'^m i i
BH((|),0)Sin0 d0 d(f> 
[D<'C4>,0O13 

... (4.1-21)

]

6 12 6 >6 12 6B"(<t>,0) = (Cosij)Sin0) + (Sin<|>Sin0) ^ y ^  + (Cos0) ^ z ^

o c 12 c 6 5 l2 2 5 5 ~̂2 5+ 6Cos (J>Sin 0Sin<()Jl̂ x^y^+ 6Sin ©Sin iCosl^^x^y^ + 6Gos 4>Sin 0Cos0̂ ĝ z^x^

12 2 5 5 12 2 5 12 50£=1 x z  + 6Sin $Sin 0Cos0̂ £^z^y^ + 6Cos ©Sin̂ SinÔ g-jŷ ẑ

12 2. 12 2 46 4 2 4 2  6 4 ^ _+ 15Sin 0Cos <j)Sin 0 E-X y + 15Sln ©Sin <j>Cos <f) E-x yJo J- X/ aj Jo “J- X/ X/

4 4 2 ^ 4 ?  4 2 o ^2 2+ 15Cos 4>Sin 0Cos 6 L x  z + 15Cos 0Cos <)>Sin 0 E-x zXs JL X/ JC X/ J- X X

4 4 2 ^2 2 2 4 2 2 ^2 2 4+ 15Sin <))Sin ©Cos 6z=lyzZi + 15Cos ©Sin 4>Sin 05g^y^z^
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4 2, 12 1CT. 5„_,. 4, 12
+ 30Cos 6Sin eCos<}>Sin<}> E-x y z + 30Sin GSin <|)Cos<j>Cos0 g-x v zX/ X/ X» X/ -L X> X> X>

19  195 4  4 6 3 3 3+ 30Sin 0Cos ^Sin^Cose + 20Sin eCos<()Sin Q̂ JI-jX̂ ŷ

12 12
2OSin%Sin36Cos30 ̂I-̂ ŷ z3 + 2CK3os3<}-Sin3eCos30££^x3z3

12 12
+ 2QSin^0Cos2<J>Sin2<}>Cos20 I^x^y^z2 + 6OCos30Sin30Ctos2<J>Sin<j> ]Lx2y z3

X,“ -L X/ X/ X/ ▲ ^  X»—"X  X/ X/ X»

12
+ 6OCos30Sin30Sin2(j)Cos4)̂ I:Ly^z^x^ + 6OSin^0Sin3(|>Cos<}>Cos20 ĵ|1y3z2x̂

12 WV 12
+ 6OSin^0Sin3<j>Cos2<t>Cos0 ̂I-̂ x3z2ŷ  + 6OSin30Cos3$Sin2<J>Cos0 ^£^y3x2ẑ

12
+ 6OSinScos3<f>Sin<J>Cos20 L x j V ]  /720Xj r '-1 )C Xj Xj

j T \
In evaluating our terms (4,1-19), (4,1-20) and (4.1-21), 
after integration, we require the value of J, the exchange 
integral for ̂ ferromagnets with hexagonal close packed 
lattice structure.

4.2 Evaluation of the Exchange Integral
RUSHBROOKE and WOOD (1958) have in their work calculated

the first six coefficients in the expansion of the 
susceptibility X, and its inverse X-1 in ascending powers
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of the reciprocal temperature for the Heisenberg model 
of a ferromagnet with cubic symmetry. From these
coefficients of X, estimates have been made of the reduced

k„T B ccurie temperature e = — =—  for the simple, body centredC J
and face centred cubic lattices. 

It was found that formula 
5

0 96 (z-l)(llx-l), ... (4.2-1)

where X = S(S+1) and z, the lattice coordination number 
reproduces the estimated curie temperatures fairly 
accurately.

In evaluating J for the cubic lattices, we have 
made use of the above formula by writing

T = V 0
2JS 2ST ... (4.2-2)

2-1) doSince (4.2-1) does not apply to crystals with close packed
Hexagonal lattice structure, following RUSHBR00KE and
WOOD (1958) and DOMB and SYKES (1957) we have a technique
of calculating the reduced curie temperature (6 ) from whichc
J the exchange integral is obtained.
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In what follows we write the reduced susceptibility X as JX

Ng mB
where N is the number of lattice sites, yB denotes the 
Bohr magneton and g the gyromagnetic ratio, 
shown by Rushbrooke and Wood that

xe 1 , co an= ±S(S+1) Z —  , 3 n=o _n ’U
and

xe
b

S(S+1) n=o

kT

_n
n

where e = -j- is the reduced temp

been

<P
(4.2-3)

(4.2-4)

mperature.
According to Rushbrooke and Wood, the general expression 
for the coefficients b1,b2,bg,b4 ,bg iand bg are given below 
in terms of the following parameters Pn ,q,r,t whose 
meaning are given as follows.

= number of (unlabelled) close, non­
crossing circuits of n+2 points on 
the lattice

of which join neighbouring lattice sites.

Y^zNq = number of (unlabelled) diagrams of the type 
which can be found on the lattice.



lo a

3.

4,

can be found on the lattice

number of (unlabelled) diagram of the

type which can be found on the lattice.
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Their values for the various lattices are tabulated below:
Lattice z P1 P2 P3 P4 P5 q r t
Simple cubic 6 0 4 0 '44 0 0A ° 0

Body centred cubic 8 0 12 0 222 0 18 0 0

Face centred cubic 12 4 22 140 970 % 3 6 4 16
Hexagonal close pack 12 4 22 140 970 7196 37 4 16

.  . .DOMB and SYKE (1957) observed that the lattice parameter 
which we have c-alled q in the table above has, the value 
37 Tor the hexagonal close-packed lattice in contrast to 
36 for the face centred cubic lattice. Consequently, the
value ag and bg are slightly different for the hexagonal 
close packed and face-centred cubic lattice. The general
coefficients b., , jb*, are given as follows

h  * i zx
b 2 - gZX[ 4

!>•••> bg

bg = 135z x I -4x -8x-6+10p^x + 5p^x]

b4 = 4USZ X 1 (SOP^Pi-iG).3 +
+ (-54P1 + 96 - 45z)x + 45]
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b5 = 42§25z x[ (2800P3^-3360P2-3360P^-1456P1+800)x 4

+ (1400P3^6160P2^-3360P^4200zP1+12936P1+80+1120z )x :

+ C23 S8P1-4752- 3 7 8 0 z )  X t- 1 7 2 8 1

b6 = 127575 ̂  -4480q-26880P1P2+11200P4-13440P3-25984P2+5824P

+24960P1-128) x5+(-4480ci-26880P1P2+5600P4
‘ -'

-27440P3 + 427842 - 224C0zP2 + 112896P2 - 11200ZP3

-62800P1 + 24640zP1 - 12960 :Z)X

1  < /
+(-840r - 1260q-5640P1P2 - 12600P3 + 66612P2 - 15860zP2 

+81648P2 - 6440zP| - 164760P1 + 61320zP]L - 204 

-11844z + 58£022)x3 + (-210r + 26082P2 + 7623P2

+ 35490zP1 + 27978 - 38052z + 9660)x"

-19440P1 + 29116 - 29862z)x + 8694, ... (4.2-5)
where

X = S(S+1),
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These coefficients have been computed with the aid of a 
computer for cobalt Co, Dysprosium Dy and Gd, Gadolinium,
We have also extended it to cover, both Iron and Nickel, 
so as to make a comparison with the values of 6c calculated 
using Rushbrooke and Wood formula (3.4-1).

The method originally used by OPECHOWSKI (1938) and 
ZEHLER (1950) for estimating the curie temperature from 
a knowledge of the first few a or b coefficients was 
to find the smallest positive real root of the equation

. . ,  =  0  , , ,  ( 4 . 2 - 6 )l+b-.x + b0x2 + 
1

the estimate of the curie temperature.o'
Denoting this by X , X~ = 0  when 0 = — r- so that — r is

X X

We have in this work, taken all the six coefficients
into consideration and by the use of Pade approximants
(see Appendixa expressed susceptibility as rational
functions, v/ith a reduced number of terms

1 :u x*X = 1____  = — 2—
ia=o a

In xp P
. . .  ( 4 , 2 - 7 )

Equation (4,2-7) after a cross multiplication gives for 
Nickel (Ni) ■
(l-6x+6x2+6x2+0,7 5 x 4 - 3 ,55x^ -28.389x^) ( d̂ +̂cL̂ x+d̂ x2) = 1+n^x ... ( 4.2-8)
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Equating coefficients of like terms, we obtain with

, = 1 = ndo o
d^ = n +̂6

-6d1+d2 = -6

6di-«2+d3 = -6

6d1+6d2-6d2+d^ = -0,75

0,75d^+6d2+6d2~6d^+d^ - 3,55

-3,55d^+0i75d2+6d2+6d^-6d^ = 28!. 389

Solving the equations above, we have

d. = 1,6807, dQ = 4,08421 *
2

d5 = 4,8105 and - -
Therefore,

X =
2

= .1
d ,x-

b̂jj,x j=o (1-4,319X)

Xc 4,3193
6 = 4.3193c

The critical point exponent

«

... 0

. , 1,6807 , 4„0847
Y  ̂ 4 3193 + 2(4.3193)^ = 1.61.

.2-9)

.2-1 0)
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0 has been obtained using this technique for, Iron, 
Nickel, Cobalt, Dysprosium and Gadolinium and the results 
compared with the results from Rushbrooke and Wood formula. 
This technique has enabled us to calculate the critical 
point exponents and all these have been tabulated and 
shown in the following table 4,1.

These values of 0 calculated now enable us toc
fromcalculate the exchange integral J from equation (4.2-2). 

These values of J when substituted into equations
(4.1-19), (4,1-20) and (4.1-21) give the coefficients
3/2 5/2 7/2T ' , T ' , and T ' of spontaneous magnetization

respectively and the effect of the electrochemical potential 
is examined. The coefficient of the specific heat is also 
computed by the method outlined in chapter III and the 
results tabulated, for the various ferromagnetic elements. 

All these coefficients are shown in the table 4.2.

4.3 Spin wave - Spin wave - Spin wave Interaction
We have extended our formalism and technique to take 

into account the wave-wave-wave interactions and the 
effect thereof.

As usual, by the method of second quantization and 
using Holstein and Primakoff transformation, the Hamiltonian
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Table 4.1 - Reduced curie temperature (9C) and the
critical point exponent for some ferrometals.

Ferromagnetic Lattice Rushbrooke Pade*
Elements Structure and Approximinants Spin

Wood 0 0 £ 2
Critical 
point 

nent

IRON (EE)

(Gd)

Body
Centred 7.656 
Cubic (BGC)
Hexagonal

C0BALT ( a , )  S S S d  12-030
(HCP)

Facer-

8.057

12.659

Cubic (PCC)
.319

Hexagonal
DYSPROSIUM Close 
(Dy)

NICKEL (Ni) Centred 4.153

<<
Packed 188.489 201.110
(KCP) y

Hexs
GADOLINIUM Close

Packed 
(HCP)

98.680 105.180

1
2

7
2

1.45

1.40

1.61

1.30

1.31
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Table 4.2 - Coefficients of T3/2,T5/2,T7/2 and T4 of spontaneous magnetization and
r>3 /  2the coefficient of T ' of specific heat for some f<

ELEMENTS LATTICE
STRUCTURE

SPIN (s)/
NEAREST
NEIGHBOUPS(z)

i
CHEMICAL
POTENTIAL

(p)
TRANSITION
TEMP.

(TC)°K
REDUCED
TEMP(0 ) c

c ^ > 2 <

f  - .

C3T7/2 c4t4
SPECIFIC
HEAT
t3/210-23

- SC s = i,z = 6 0.123 1043 1.88 5.203X10”6 1.345xl0“9 5.525xl0~13 3.590xl0-15 4.54

s = i,z = 7 0.152 2.34 2.292X10"6 0.828xl0“9 3.167xl0-13 2.669xl0-15 2.94
IRON (Fe) BCC s = i,z=7.5 0.161 1043 2.45 3.647X10"6 0.894xl0-9 3.420xl0-13 4.607xl0“15 2.73

s = £,z=8 0.169 2.64 4.000xl0“6 1.065xl0-9 4.OOSxlO-13 5.726xl0“15 2.70
s = i,z=ll 0.214 3.77 2.008x10“° 0.357xl0-9 1.355xl0~13 1.351xl0-15 1.27

COBALT (Co) HCP
s = i,z=12 0.228

1400
4.15 2.259x10^ 0.496xl0“9 2.271xl0-13 2.070xl0“15 1.25

NICKEL (Ni) FCC s = i, z=12 0.228 672 4.15 7.395xl0“6 0.360xl0“8 3.787xl0-12 5.146xl0“14 1.25

GADOLINIUM
(Gd) HCP s = J, z=12 0.00215 292 105.19 2.279xl0“6 7.70xl0-7 9.275xl0-3 4.95xl0-10 1.728

DYSPROSIUM
(Dy)

HCP s = 5, z=12

(

0.00103 85 201.11 1.671x10^ 2.497xl0-5 

■---------

6.929X10-6 2.235xl0-7 1.731



117

of a Heisenberg ferromagnet is written as,

H =-2Jj E£ [ 2Sa^fj(s)f£(s)ap-2Sajaj+a^a^a*a£l - g y ^ E a ^  .,, (4.3-1)

+ *In equation (4,3-1), fj(s) = (l-a^.aj/2S) and the expansion
of f.(s) takes into consideration all the two-product

3
and four product terms in order to account for the wave-wave
wave interaction, Hence,

l,a+aA l^a+ax2 1 ,a+ax3
L6(' 2S

. + ,2 , + + N + .rj| + . + + +(a a) = (a aa a) = a (1+a a}a = a a+a a aa,

+ ?. _, + -, + O  ̂ + 0 + A „ + _fl a a 1 l,a â  lra a,z 1 ,a a^3 5 .a av4 7 ra a^5
L ~ 2S j 2^ 2S } ~ 81 2S ; 16C 2S } " 128 Q 2S J ~ 256̂  2S J *

. (4.3-2)
where

, + x3 , + + + x + ,-- + x r + x + ,.-  ̂+ 4- + + N(a a) = (a aa aa a) - a (1+a a),(a+a a)a = a (l+2a a+a a+a a aa)a

+ , O + + . + + += a a+3a a aa+a a a aaa
+ ^ + += a a+3a a aa,

- a+[ (l+a+a+a+a+aa)(l+a+a)la
+ . n + + ' + + + + + + +a a+7a a aa+6a a a aaa+a a a a  aaaa
+ JTJ + +*= a a+7a a aa,
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, 4- x5 ,4- + + 4- 4- 4- 4- N A-l 4- w-l 4- N ' + x(a a) = (a aa aa aa aa a) f= a (14-a a)(l4-a a)(l4*a a)(l4-a a)a
4“ 4* 4. 4_= a [ (l+7a a+6a a aa+a a a aaa)(l+a a)]a

= a+a+15a+a+aa+25a+a+a+aaa+9a+a+a+a+aaaa
1 o . + + + ++ 2a+a a a a aaaaa

= a'a+lSa'a'aaa,
„ v V ̂+ 6 /.4- + 4-4- + 4-xCa a) - (a aa aa aa aa aa a) -

r 4- 4~ 4̂ 4 4 4* 4" ■ 4- 4 4* 4*a+[l+15a a+25a aaa+lOa a a aaa+a a a a+a a+15a a+15a a aa
.............................  + + +4-50a a aa4“25a a a aaa4-30a a a aaa+10a a a a aaaa44a a a a’aaaa4- 4- 4-4-4- 4- + 4- 4- 4- 4- + 4*

4-a+a+afa+a+aaaaal a,

= a (l+31a a+90a a a a aaa+15a a a a asaa+a a a a a  aaaaaja
+ „„ + + v X- a a+31a a aa,

/ • £ >Equation (4t$-2) becomes
+ .....................................................r a & ^\2 _ 1 \ l 5  ̂1 ̂  4 1 j n 4-̂

(1 2S ) 1_ 2^2S 8^2S 16(2S) l28^2S) ,,,Ia a

r 1,1,2. 3,1,3,7.5,1,4.7.15,1,5. ,,, 0 0,H^2S + 16^2S^ + 12S^2S^ + 256 ̂ 2S + • ..Jaaaa ... (4,3-3)
4" in _ !L3.) 2 u  2S }

4" 4-4­1 + Aa a + Ya aa a

where
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> = d - < 1 - 4 ^ )

ir_ i A  + A r J _ ^ 3 + li8^2S; 16V2S; 12

A
J_ 3 7.5. 1 .4 7,15.1 v 5
2S; 128('2S; + 256 ^2S^ * *’l2S

Equation (4,3-1) can be wri 
and HS = 0 to give o

H = Z-

r 128 2S 256 V2S
* * • (4 -

written with the above modification

-2J[ 2Sa+(l+Aa+:

utting a . = a , a J '

a + Y a + a+a a ) (l+Ab+b+Yb+b+bb)b+(S- ~+

■* ’ b

&
E-2J[ 2Sa+(l+A(a+a+b+b)+Y(a+a+aa+b+b+bb)+A2a+ab+b)b

_ A

a+a)(S-b+b)l 
,, (4.3-5)

(S2-S(a+a+b+b)+a+ab+b)]

-2J[2S(a+b+A(a+a+ab+a+b+bb)+Y(a+o+a+~
f ' +bbfc)fa+a+aab+a+b+b+b 

V>VA2(a+a+ab+bb) + (S2-S(a+a+b+b)+a+ab+b] ,,, (4,3-6)

S V  + +
Z-2J[2S(a b-a a)+2SA(a a ab+a b+bb)+a+ab+b

+ 2Sg(aVa+aab + a V b +bbb)+A2(a+a+ab+bb)I ,,, (4.3-7)

Using the transformation
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_  i +  _ _ i  +a, - N 2Eexp(-ik .)a ., a, = N 2£exp( ik . )a . k j pv j' j ’ k j l v J J ... (4.3-8)

where k denotes a reciprocal lattice vector and N is 
the total number of ferromagnetic spins.

We can now transform every term which has not been 
transformed appearing in the above Hamiltonian with the 
help of the fourier transform (4,3-8)

l Ja+a+ab+bb+ = EN”3Ja£ a+,a . .a+...a . a+ exp i(k,j+k1.j-k*1.j+k111.Jl 
all j K k1 k11 k111 k1V kv

where
-kiv.«-kv ,n)

. iii , ii. ii^o iv , i, i , v . , k = k + p  , k = k + p , k  = k+p

on substitution, we have

+-+-1-+1-*- - + + + , ~ ..,i . ,ii . iil Ja a ab bb = N 1 Ja.a a ..a .. ..a . .a, expi(k,j+k .j-k .j+k .a 
all j k a1 k11 k11+p11 kVp1 k+p

J *

-p . t+p11 i t-k*. Jtr-p1-. £-k. 4 )

1 , 11,N-^J^yia^^piiy^^pexplCk+r-k^jCj-t)

expi(p11-p1-p), ,,, (4.3-9)

There are three important contributions coming from the 
above term one with p^ = p = 0, k = k^, and k = k**.
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The first contribution gives

= N-3eJ(k+k^-k^)z a?"a+ .a+ ..a ..a .a.
k k1 k11 k11 k1 k

The second contribution gives

t-2 ii, + +N EJ(2k-k )z aka .a 1±a ijL a ±ak
K k1 k11 k11+p1+p k+p1 k+p

The third contribution gives

,-2„ T/l i, + + . .N EJ(k )z ■ ,  i“, ii. . a ^  a x T X . a . . a .
, JLJ- , -I 1 1  T 1 1  , 1 1  i ,  , i  . x  , x *  .k k k k k +p +p k +p k +p

Adding all contributions, we obtain,

4 , ....,+ + , +, , ,T—2 i , ii., T/1 i., + + +
all .1

E Ja a ab bb = N zE[J(k+k -kXi)+J(2k -k x)+J(kA)laka iiaka ±_ ±±a i_.
kx k "  IV r  k

(4.3-10)

k+k3-i

Similarly,
A c *

E J(a+b+b+bbb) = N 3EJala+.a+..a .. .a . a exp i(k, j+ki.£+k'i'i<,Jl-k:i‘:i‘i'.Jl 
all j k1 k11 k111 klv kv

-klv.*-kv.t)
with

, lii , ii ii , iv ,i, i ,v , . k f k +p , k = k +p , k = k+p.

On substitution we have
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EJ(a+b+b+bbb) = N^EJa~a+.a+. .a . . . ,a . .a, , expi(k, j+k'*', t+k^.t-
k k1 k11 k11+p11 k V  P

k11,Jt-p"̂ . t-k .t-p.t-k. £-p.

= N ' ^ J V ^ a ^ a ^ y a ^ ^ e x p i C k C j - O e x p - i C p ^ V p ) , ) !

■Qj ... (4.3-11)

£Ja+b+b+bbb

= p = 0, k

+ + + 
kakiaki.a ..a , 1 k k

11

,,, (4.3-12)

Now, we can write the Hamiltonian in the transformed form 
as follows a

H = Eo+ lAtkJa^N-1 r V C k . k ^ V a  -Hf2 J a V(k,k1,k11) 
K k k1 k k k,k ,k

/ ■
ACk) = 2zSJ(l-y (k))

a^a+ia+ aka .a ..k ki kn  k fci kn ... (4,3^13)

where

V(k,k1) = 4S zJ[ YCkJ+YCk1)]-zJ[ l+YCk-k1)]

VCkjk1,*11) = —4SYzJt y(k)+Y(k1)+Y(k'1’1)] —l2zJl Y(k+ki-kii)+Y(2Ici-kii)Y(ki)]
and
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E = -zNS2J, Y(k) = l exp(ik,a)/z; |a|3 = V /N
a °

Writing V(k,kx,kxl) fully we have

EV(k,kX,kXX) = N_2z4sYzJ(l
- i

. Itii + 1 _  ( J ! .  (fcU a)'

. .2 _ ,,±1i , ii,2 0 , 01 i . i i j / ^  /■ * i .2
+ - (k+k ~k ■ a2+l - (2k -H .) a2+l -z v z z O n z 1

x iAveraging over k space we have
& ,,, (4.3-14)

4sYJ ' 2 2 . i2 2 . ii2 2— !5-E<(3z-k a -k a -k a
N2

JE<3z-k2a2-6k1 a2-2ki;L a2n ..)
k1

,,, (4.3-15)

- ^ E(3z-k2a2-ki2a2)r x3/2 L  ^  + ̂ W A W ^ r x 3^
111=1 in /2 *

/

averaging over k ', we have

z em=l 3/2 m '
... (4.3-16)

= 4sYj[ (3z-k2a2)r2T3(n?1 -g^r)2 + A2J(3z-k2a2)r2T3(Ê ^ ) 2 ... (4.3-17)
m

Rewriting our transformed Hamiltonian, we obtain

H = Z(A(k)-y+A1-B1k2a2)n1

= ZA(k)-(y-A1)-B1k2a2)n
k

where
k ... (4.3-18)
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3 2 2 . , °° em By.
A = 3zt r J(4s y +A )( 1m=l 3/2- m '

„1 , A ^,2, . 2  3, j em6|J,2B = (4sv+A )Jrv ( ^ - 575)
m '

. . .  ( 4 . 3 - 1 9 )

Equation (4,3-19) clearly shows the effect of the wave-wave- 
wave interaction on the dispersion relation of the magnons.
The energy of a magnon is altered slightly by the additional 
term -B1 , while, the electrochemical potential of a magnon 
is altered by the additional term -A^.
Our interest here is to find out tile effect of -A'*' on p , 
Writing w = |y|/J, We ha- ve V

w = (a-1) 2rZx
m3 / 2

HTIW
3/2 “ e--  !_-----+ (4sy+x2)rT32z[ | 2Sr_]2 ,(4.3-20)

lm=L 3/2 m '

with the aid of the computer, we solve numerically the 
above equation and by the method of least square error 
fitting, we obtain the following expression for w, for 
Iron, Cobalt, Nickel, Dysprosium and Gadolinium,

(i) ron Fe, (s = i, z = 7.5)
w = -1,6S9x 10'"3+0,154t+0.28t2 = 0 . 1 5 t + 0 , 2 8 t 2

(ii) Iron Fe, (s = J, z = 8)
w = -1,846x10-3+0,164t +0.27t 2 = 0,16t+0,27t2

... (4,3-21a) 

... (4,3-21b)
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(iii) Cobalt Co, (s - §, z - 11)
w = -2,304xl(T3+0,2C9x+0,32x2 = 0,21x+0.32x2

Civ) Cobalt Co. (s = f, z = 12)

(v)

(4.3-21c)

Nickel Ni, (s « z = 12)
Jt +O , 33x2 

x+4,172x10 2x2 = 1.

w - -2,441xl0~3+0,223t+0,33x2 = 0,22x+0.33x2

w = -2.441x10 3+0.233x+0,33x2 = 0.22x+0

... (4,3-21d)

... (4.3-21e)

(vi) Gadolinium Gd. (s = §, z = 12)

w = -1.919x10^+1,444x10 2 = 1.44x10_2x +4.17xl0-2x 2
(4,3,21f)

(vii) Dysprosium Dy (s = 5, z = 12)
w = -1.319xl0”4+0,990xl0"2x+2,921xl0“2x2 = 0,S9xl0'‘2x+2.92xl0"2x2

,,, C4.3-21g)
G(a) from equation (4.3-7) becomes

G(a ) = e |y | = v^/2S

We proceed to find the effect of this new y on the
coefficient of T3/ 2 in the expression of the spontaneous
magnetization. This has been done and the table below
compares this new ’ y '  with the y of chapter III, We
see that the two p’s hardly differ in each case. That is,
wave-wave-wave interactions is negligible in comparison with
wave-wave interaction. The following figures shows the graphs of w 
against I.
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,3/2Table 4.3 — Coefficients of T with chemical potential in wave—wave—wave 
interactions and wave wave wave interactions.

ELEMENTS
CHEMICAL 
POTENTIAL IN 
WAVE-WAVE 
INTERACTION 

Cp -l)

CHEMICAL 
POTENTIAL IN 
WAVE-WAVE-WAVE 
INTERACTION

c ^ 3/2

(p

C,T3
C l

/ 2

Cp2 )

C- experimen- 
1 tal

BCC
s = i, z=7.5 
e .g . Iron

0.16069

BCC
S = y Z = 8
e.g. Iron

0,16880

HCP
s = i, z = 11 
e.g. Cobalt

0.21400

0.15369 3,647xl0-6 3.701x10 -6 -63.41x10 (Iron)

0.16417 4.00x10 -6 4.039x10 -6 —63.41x10 (Iron)

0.20940 2.008x10 -6 2.026x10 - 6 ,-61.7x10 (Cobalt)

HCP
s = i, z = 12 
e.g. Cobalt

0.2280 0.2233 2.259x10 -6 2.279x10 - 6 v- 61.7x10 (Cobalt)

FCC
S = 5 , z — 12 0,2280 0.2230 7.395x10 -6 7.459x10 -6 v-67.4x10 w (Nickel)

HCP
H = 3,Z = 12 0.00215 0.00206 2.79x10 -6 2.280x10 -6 (Gadolinium)

HCP
5,z = 12

—
0103 0.00099 1.671x10 -4 1.6714x10 -4 (Dysprosium)
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Fig. 4.3-1: Graph of Chemical Potential/Exchange integral

W against reduced temperature T.
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Fig. 4.3-2 Graph of Chemical Potential/Exchange integral
W against reduced temperature T



129
Fig, 4,3-3 Graph of Chemical Potential/Exchange integral

W against reduced temperature T.
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Fig, 4,3-4: Graph of Chemical Potential/Exchange integral
W against reduced temperature T.
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Fig. 4,3-5; Graph of Chemical Potential/Exchange integralW against reduced temperature T.
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CHAPTER V

INTERACTIONS II

It has been suggested that magnons, by virtue of 
their motion do mutually interact, dynamically and 
secondly they are strictly speaking not Bosons, In this 
chapter, we examine these two suggestions

5.1 The Dynamical Interaction
To the best of our knowledge and in agreement with 

several authors, the spontaneous magnetization at low 
temperatures contains terms of the form T^^, T ^ ^  and 
T w h i c h  correspond to the terms k^, k^ and k^ of the 
dispersion law respectively. In this section, we are 
interested in finding the next degree of T contri­
butes to the magnetization. We shall also find the effect 
of the electrochemical potential on the coefficient of 
this degree of T.

Going back to our transformed Hamiltonian Expression 
(3.1-39) is

H-E^ = £Aknk + N - V ^ n ^  + N ~ V „ , =  A+B+Ck , a kq k q k,q' kq k q

where

Vkk< = ZJI Y(k)+Y(q)-l-Y(k-q)] , Wkq f z(a-l)J[ y(k)+y(q)] 
Ak = 2sJz(l-y(k)]
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4 4If we expand y(k) to order k a , we have that

. 2 2 . 
y(k) = 1 - + A(<j>, 0 )(ka) .

Note here that the term B on averaging over an angle 
is not zero and

Vkk< = ^ j r  + A(<J>,6)(ka)4+ 1 - +A(<f>̂ *)(k1a)4-l-l+ (k~k-̂ a
a X-A(a,g)(k-k')4a4]

zJ[-A(a,B) (k4+k' 4+4k2k'2) a4+A(*, e) (ka)4+A( <|> •, 6») (k' a)4J

. . .  (5 ,1 -D

(5.1-1)

Averaging in k' space and neglecting small terms, we have

J<[ Aio:Vkq nq> = -zJ<̂ ( « ; 6)4k2a4] nq q2> ,,, (5.1-2)

Our fourier transformed Hamiltonian is written as

9fII = z(Fk -u)n
k k

where
F = 2SJa2 - N 1zJ<A(a,B)4q2a4nq> 

F = 2SJa2[ 1-nJ

(5.1-3)

... (5.1-4) 

... (5.1-5)

n = N_1zJ<A(a,B)4q2a4nq>/2SJa2 ,

where
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n = V zja4
2tt2N

A(g,e)4q dq 
2 .exp (Fq -v ) -l

where

-  5  A
OS'
T2tt

l i = da ACa,g)SinfrdB t f .C5.1-6)
o

We should note here that the presence of n has 
caused a modification of the Dispersion law. There is a 
shift in the energy of the Spinwave, because of the presence 
of other Spin waves. This kind of interaction between Spin 
waves is called the Dynamical interaction (Dyson (1959)), 

With the presence of the Dynamical interaction 
between Spin W&ves> we are interested in finding the 
effect of this interaction as well as the effect of the 
electrochemical potential on the coefficient of spontaneous 
magnetization,

1m ft 11
(5.1-7)n . - - <Ilk> - 1 r kT ^3/2 “ e+m3yri v6M £ NS QS^8irJS m=l 3/2 (1“n)k m '

where the number N of atoms per unit volume is Q/a ,
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Therefore for small n,

<nk>

NS
m3y= J_r kT ^ / 2 v e + 3QS ̂ 8nJS m=l 3/2 u  2nm

_ 1 r kT 3/2 » 3 3ir T , kT ,4 t.e+mBl1 „em6p
QS oirJS' n^lm3/2 + ̂  W  ^5/2

A

... (5,1-8)
The second term of expression (5,1-8) clearly gives the

Acoefficient of T This coefficient has been calculated
for some ferromagnetic elements, and shown in Table 4,2,

4 t OThis T dependence, due to Dynamical interaction, is 
experimentally negligible a^ compared with the other 
coefficients of T,

5.2 The Kinematical Interaction
According to DYSON (1956), the kinematical inter­

action arises because the Spin wave states which contain 
more than one Spin wave are not members of an orthogonal 
set, Th^ non-orthogonality of these states produces an 
interaction between Spins which we call the kinematical 
interaction. The Physical cause of this interaction is the 
fact that more than (2S+1) units of reversed Spin cannot be 
attached to the same atom. There is therefore some form of
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exclusion at work , to limit any dense packing of many 
spin waves within a given volume.

The kinematical interaction is a purely statistical 
effect which reduces the statistical weight of states 
containing a high density of spin waves per unit volume, 
They appear in calculation of the statistical and thermo­
dynamical properties of the spin wave system, but not 
in the dynamics of individual spin waves.

In this section, we show the effect of the kinematical 
interaction of Spin waves by recomputing the coefficients
of T in the expression of the spontaneous magnetization, 
for Iron, Nickel, Cobalt, Dysprosium and Gadolinium,
This time, all averaging in k space is done over inter­
mediate statistics.

The intermediate statistics, is so-called because the
3r oflargest numbe particles p allowed in any state is

intermediate between Fermi-Dirac Statistics with p - 1 and
\ V *Bose-Einstein statistics with p = For this statistics,

it is th«le case that the grand partition function is
P nk

ak ‘kr~ k
Z = 2 a,n, fo K ... (5.2-1)

where
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a, = e k
-3(Ek-y)

3 y . K k
z  = e , b k = e

= bfcz, l<p<« 

-BE,

1-ap+1
Z = 1-a,

1 - (bkz )p+1

The number distribution is defined as

n, - z-— InZk 8z

Thus the distribution becomes

1 _ (P+1)
(b, z)-1-l (b. z)'F‘('P+1^-l

(5.2-3)

" V  =
v k ■
a

i_____________(p+D
expB(Ek-y)-l expB(E,-y Xp+:l)-l (5.2-4)

•VFor Spin waves, p = 2S+1
S3

-n > V O  1 (2S+2) ,k expB(Ek-y)-l expB(Ek-y)(2S+2)^1 (5,2-5)
k

Averaging under this distribution, the chemical potential 
y in (3.2-5) becomes

2 2iy = (1-a) <̂1 2z-q a i nQ> (5.2-6)
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P = (l-a)Jl 2z-k2a2l — 5U
2tt jN

k2 dk

o expB(Fk -x
(2S+2)kdk I

expgQFk -x)(2S+2)-l

neglecting smaller terms, we have

- n  \t2zV r P -  (l-a)J— iH
2irTtf -

e^,g(Fk _

mBx

.,, (5.2-7)

<^
(5,2-8)

= (l-a)2&j[ - ~ ~ 3/2 ~ V (f ^  " C2S+2) E„ - £
1 (mBF)3/2 4 BN  4

m$x(2S+2)
v d ) Ji

Put

4ir
riK§ |p|5(4) , w - y . T = W N

(m3F)(2S+2)l3/2 4A  4 
(5,2-9)

Jr

-mw
,2St

2SJ<y
, F = 2SJa ,

w = H-a)2zr,3/n J ^ 7 2  - 23+2 ̂  
X* m 7

-mw
2Sr

ie-5/2m '
(2S+2)

(2S+2)-3/2

(5,2-10)

(— 1 v OQt ̂^2Sx7 » ^(2S+2)
- ^372

We proceed to solve y numerically from equation (5.2-11), for the 
values of t between 0 and 0.50.

By the method of least square error fitting, we

- 3/2> < eT75>-Jl < ^ 79. C2̂ ) ' 5 (5,2.11)

obtain the following expressions of w, for Iron, Cobalt, 
Nickel, Dysprosium and Gadolinium.
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(i) Body-centred cubic (e,gt Fe) with s - z - 7,5
w - 1 . 4 7 6 x 1 ( T 3 + 0 . 1 0 8 t +  0 , 2 1 t 2  =  0 , 1 1 t + 0 . 2 1 t 2 ... (5.2-12a)

(ii) Body-centred cubic (e,g. Fe) with s = z = 8

w = -1.564x10 3 + 0 . 1 1 5 t + 0 . 2 2 t = 0 . 1 2 t +  0 . 2 2 t 2  ^ ^(5.2-12b)
(ill) Hexagonal close packed (e.g, Co,) with s ='•£, z ■ 11

' ^ 7  (5-2-12C)w = -2.058x10 3+0,1 5 4 t + 0 , 2 8 t 2  -  0 , 1 5 t + 0 , 2 8 t ‘

(iv) Hexagonal-close padded (e.g, Co) with s = z = 12 
w = - 2 . 6 5 9 x 1 0 _ 3 + 0 , 1 7 2 t + 0 . 2 9 t 2  =  0 . 1 7 t + 0 . 2 9 t 2 ... (5.2-12d)

.,. C5.2-12e)
(v) Face centred cubic (e.g. Ni) with s - z = 12 

=  - 2 . 6 5 9 x 1 0 _ 3 + 0 , 1 7 2 t + 0 , 2 9 t 2  =  0 . 1 7 t + 0 , 2 9 t 2

(vi) Hexagonal close packed (e.g. Gd) with s = z = 12

w = - 1 . 4 6 6 x 1 0 - 4 + 1 , 0 2 7 x 1 0 “ 2 t + 2 , 8 6 1 x 1 0 “ 2 t 2  = 1 , 0 3 x 1 0 _ 2 t + 2 . 8 6 x 1 0 ~ 2 t 2

(vii) Hexagonal close packed (e.g, Dy) with s = 5, z = 12
, (5.2-12f)

w = -1,053x10^+7,4 2 2 x 1 0 ~ 3 t + 2 , 0 6 0 x 1 0  2 t 2  =  7 .4 2xl0~3t +2.0 6 x 1 0 ~ 2 t 2

J T
... 5.2-12g)

As usual y (the electrochemical potential) is computed for
c Aall the ferromagnetic elements. We proceed to find the

Veffect of this new y on the coefficients of T in the 
expression for the spontaneous magnetization.
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\
NS (2tt)3NS

[
" 2 kdk
expg(Fk2-P)~l

- 2S+2 k2dk l
expg(Fk -y)(2S+2)-lu u

(5,2-13)
The third order approximation of F leads to

2 . , . ___ ,4 . .......  ,v6. ,= 2sJ[ (ka) -zA( <J), 0 ) (ka) + zB(<j>, 0 ) (ka) + ,,f C5.2-14)

Putting (5.2-14) into (5.2-13) and evaluating, v

S V .  _ V _ c-3/2 e-n»y e-ny(2St2) . 3
NS /0 L m»l t372 _ 3/2 ^

we have

(2tt)3N m=ll 3/2m m3/21 '

e « 2 > (2s+2)-i+ ̂  1(3) ̂“572 m '
3}x

2. 7 7 -my(2S+2) , „
( 4 z %  - X ) r ( ^ ) { ^  - 6 (2S+2) 2}t"2 4 3' v2' 1 7/2m 7 m3/2 .. (5.2-15)

where r is the gamma function y = and all other terms
/ • V  kTretain their previous meanings and definitions.

Expression (5,2-15) gives the effect of the kinematical 
interaction, as well as the effect of the electrochemical 
potential on the coefficients of spontaneous magnetization. 

Theitable 5,2 shows (the new effective chemical
Vpotential and the various coefficients of T,

4The coefficient of T show's the effect of both 
Dynamical and kinematical interactions,



141

Table 5.2 - Coefficients of T3/2,T3/2,T7/2 and T4 with Kin 
interactions.

FERROMAGNETIC
ELEMENTS CHEMICAL POTENTIAL C"CT

( yM)
3/2, Cj.CT5/2)

s=5, z=6SC
BCC s=j, z=7.5 
CFe) s=5, z=8 
HCP s=2, z=ll 
(Co) S=3, z=12

0,113
0,108
0,115
0.154
0,172

4,513x10'
2.546x10
2,820x10,-6

FCC s=j,z=12 
(Ni)
HCP s=5, z=12 
(Gd)

0.172

0.00147

HCP s=5, z=12 
CDy)

0.0C 4 ,00742

— /P

5.529x10 

O  582x10

-6

-6

1.217x10'

0,672xl0~7 2.762xl0~13 1.795xl0"15

Q.543xl0~9 1.984xl0'~13 1.132xlQ~15

0,655xl0"9

0.235xl0"9

0.332X10-9

2 . 3 5 1 x K T 1 3

0.853xl0~13

1.460xl0-13

2.504xl0~15 

0.659xl0”15 

1.036xl0-15

0.241xl0~8 2.434xl0~12 2.403xlQ-14

5.191xl0^7 6.231X10-8 2.298X10T"1°

l,787xl0“5 4.950xHf6 1.165xl0~7
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, . , r

The table 5,3 below gives the computed coefficients of 
3/2T for all the five ferromagnetic elements, with the 

inclusion of the effect of the presence of
(i) the electrochemical potential y

(ii) the kinematical interaction,
(iii) both the electrochemical ootential as well as

wthe kinematical interaction, and
(iv) no interaction.

In table 5,3, we also give the available experimental 
values for some of the elements for comparative studies.

t f

G j -

9
S '



Table 5.3 The Coefficient of
143

IRON IRON COBALT COBALT
(s=5,z=7,5) (s=3,z=8) Cs=i,z=ll) 0=5,z=

GADOLINIUM DYSPROSIUM 
,z=12) (s=7/2,z=12) (s=5,z=12)

With the electro­
chemical potential u 3.647x10 6 4.000x10^ 2.QQ8X1Q”6 2.259x10”̂  7..-6 393x1a”6 2 .2 7 9 x 1 0  6  1.671X 10-4

With the Kine- 
matica.l inter­
act ion

2.818X10-6 3.239X10”6 1.495x1'

With loth electro­
chemical potential 2.546xl0"6 2.820x10^ 100 ar d kmematical 
interaction

79X10-6 6.546x1a”6 2.635X10-6 1.940x10’

.-61,689x10^ 5.529x10^ 1.582x10^ 1.217x10

With ro inter­
action

„-66,687x10"° 6.479x10”° 4,102x10"° 4.726X10”6 15.49x10”° 4.27x10"° 2.95x10,-6 .-6 .-4

Experimental
value 3.41X10”6 a 3,41x1c”6 1.7X10”6 l^xlO”6 7.4X10”6



CHAPTER VI

DISCUSSION

In this chapter, we give a detailed discussion of 
our results and extensions thereof to antiferromagnetism.

6.1 Results
The temperature Tq , below which magn I 

defined quasi-particles for cubic crysta
ons are well 

shown in
chapter two is given by

To = 2x !0-3C ^ [)2

Tq , for crystals with Hexag
structure is &  “ *•“

. . .  ( 6 . 1- 1 )

Tq = 1,23x10 3 S3( ^ ) 2 . . .  ( 6 . 1- 2)

where Tc is the transition temperature,
6c is the reduced curie temperature
is the Boltzmann's constant, h is the plandk's constant, 
z is the number of nearest neighbours, a is the inter­
atomic distance and S is the Spin value,

Thus for b^ Iron T = 44k, cc o ’ for fee Nickel T = 7k
for fee Cobalt T = 28k,o for hi Gadolinium T =cp o
and for h Dysprosium, T = 0.02k,up u

0.4k
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For temperatures T>Tq , the interaction among the Spin
waves is important. The spin operators S and S~
respectively contain the term f.(s), (see equation 3.1-12).J
Within the spin wave - spin wave interaction approximation,

+a . a j if j ( S ) -  [1

where a. and a. are the creation and an hilation 3 3
operators respectively and S, has been expanded to 
all orders.
The infinite series in the two
form

V s ) - 1 + K a j
where

. x . - A . .

» product terms has the

,,, (6.1-3)

2S )2 - 1

tran;The Fourier transformed Hamiltonian of a ferromagnet as
shown in chapter three is given by

>  -1 -1
° k k k k , q kQ k Q k>q kq 'k q ... (6,1-4)

where Eq = -zNS J is the energy of the ground state
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Ak = 2SJz[ 1-y (k)l

vkq  ̂ZJlY^k) + Y(q)-i-r(k-q)]
Wkq = z(a-l)JlyCk) + y(q )1

and a = a(s) = 4sA = 4s(l-(l^ 7̂ ) 2 )1_ a
2S'

Y(lc) = Eexp(ik.a)/z, n = a, aa
With the expansion y(k) = 1 -

k k
, 2 2 k a
z

.1. (6.1-5)

< p

jQ r+ ... to ( . 1 2 2order k a
V. on averaging over an angle gives a zero, hence the Kq
effect of the wave wave interation is included in the 
third term of expression (6.1-4) as encapsuled by a(s).

Rewriting the Hamiltonian, we obtain,

H = E(Fk -y)nk
k S2 « 2 <nn> 9where F = 2JSa + (a-l)Ja — 3_ = 2JSaz

X T

o -
and v = - n 2 22z-q a ] n >q

. . .  ( 6 ,1- 6 )

y is the effective electrochemical potential,
OGUCHI (1959) in his attempts to find the correction 

to the spontaneous magnetization produced by spin-wave 
interactions has calculated the grand partition function 
of the system defined by

Z = Trace exp(-gH), g = ^V . ,. (6.1-7)
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With,
BH = BEA. n. + BEW, n. n = A+eB , k k kq k q

Instead of Oguchi’s Z of eqn. (6.1-7), we have used,

Z = Tre"A (l-eB )

Z = Tre A - eTr Be A

„ -A r Tr Be~A, -A = Tr e -r- e[------ rJ Tr e
Tr e-A

use

. . , (6.

Z r Tr e [ l-e<B>]

Since A and B commute, [A, Bl = 0; then,

In Z = In Z - e<B> o
where <B> = I < « kqnkV

E nk<£Wl^n >
Essentially,

Z = Tre

“ E nk<ZWkqnq

...<T
pn.

A' = g p % k-p)nk

The analytic expression of p is given by

C6.

,,, (6,

p = 2J(a-l)rZt3/2 m|1exp(m6u)/m3/2 , ,,(6.1

1-8)

1-9)

1- 10 )

- 11 )

p has been computed for some ferromagnets, Csee Table 4.2)* 
As we see, p is appreciable for ferromagnets with small
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S values, and can be neglected for those with

large values of S. The effect of p on the coefficients
of T ^ 2 , T ^ 2, T^/2 and T4 of spontaneous magnetization

3/2and the coefficient of T ' of specific heat of some 
ferromagnets have been calculated and shown in Table 4.2, 
We see that in the two cases of Iron and Nickel for which 
experimental values are available from the work of ARGYLE, 
CHARAP and PUGH (1963), the comp alues of the

impressive agreement with the experimental ones, as 
shown in table 6,1

Table 6.1 - Valu 

Metal

aes of C in units of (lO^^/k2^2)

C, C1C experimental) C2 (experimental)

Iron
Nickel

3.645
7,395

0,894x10
0.360x10

-3
-2

3 ,4±0.2 
7,5±0,2

1±1 x 10-3

(1,5±0,2)xl0-2
■ ■

Tn finding the effect of the electrochemical potential\ 3
on the coefficients of T in the expression of the spon­
taneous magnetization for ferromagnets with the Hexagonal 
close packed structures, we required the correct expansion 
for the terms encapsuled in the dispersion relation.
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For the Hexagonal close packed crystals, the Hamiltonian 
is
H = £(Fk - y)n 

k 1
where

F = 2SzJ[ D"(c)>, e )a2k2-A"( 4>, 6 ) (ka)^+B"(<f>, 0 )(ka)6+ ., /k2

where D"(<}>,e), A"(<J>;6) and B" (<{>, e ) have been outlined 
and evaluated in Appendix D.

Following RUSHBROOKE and WOOD (1958) and DOMB and 
SYKES (1957) and by the use of Pade' Approximahts, we have 
calculated the Reduced Curb■i^teihperature ec for some 
ferromagnets as well as their critical point exponent,

’mulRushbrooke and Wood's formula for (eqn. 4.2-1) is for 
cubic crystals while our technique is adaptable for all 
types of crystals.
From Table 4,1, we see that for cubic crystals, the 
Reduced temperature (0C) calculated by our technique differs 
slightly from the Reduced temperature calculated using 
Rushbrooke and Wood's formula. There is a remarkable 
difference for crystals with the hexagonal close packed 
lattice structures, This implies that Rushbrooke and Wood's 
formula cannot be used for crystals with Hexagonal close 
packed lattice structures.
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The internal energy U with (p = 0) is given by

UCy = 0) - ^  4£(2JS)~5/2(kT)5y/2i— iQ m 5/2

we have shown that 9u/3y>o and hence

U(p = 0) is greater than U(p<0),

, ^ 6.1-12)

U(l,<o) . ^ f ( 2 J S ) - 5/2(M)5/2E- 4 ^ - e  c a j s ^ / V )3' 2Q m3/2
C6.1.13)

Similarly, the entropy S with p = o is not less thanA
a * 3 U 9 Sthe entropy S with p<o, because o<T = 3U/3S - ~ / ^ -  ,

This implies that the existence of the wave-wave 
interaction and hence of non-zero p, gives rise to a 
lowering of tha« thermodynamic internal energy and entropy 
In other words, the spin waves on the average form bound 
states called spin complexes.

Within the spin wave - spin wave - spin wave inter­
actions, the energy of a magnon is altered slightly by the 
additional term -B', while the electrochemical potential 
of a magnon is altered by the additional term -A* f (see 
equation (4.3-18 - 4,3-19), The effect of the new p is
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3/2found on the coefficient of T ' in the expression
of the spontaneous magnetization andcompared with the
effect of the y of chapter III, See table (4,3),
We see that the two p's hardly differ in each case, which
implies that wave-wave-wave interactions is negligible
in comparison with wave-wave interactions.

In agreement with several authors, the spontaneous
magnetization at low temperature contains terms

T3/2, T3/ 2 and T7/ 2 which correspond to the terms 
2 4 6k , k and k of the dispersion law respectively. With

essithe expansion of y(k) of expressions (3.1-39) and (6,1-4) 
4 4to order k a , we obtain an additional term - n in the

4dispersion relation, which gives the coefficient of T 
in the expression for spontaneous magnetization. The 
presence of n causes a shift in the energy of the spin 
wave. This is due to the presence of other spin waves,. 
This kind of^interaction between spin waves according to 
DYSON (1956) is called the dynamical interaction.
The electrochemical potential y affects this dynamical

4term?the coefficient of T has been calculated for some 
ferromagnetic elements and shown in Table 4,2,
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AFrom our results, this T" dependence, which is due to
the dynamical interaction is experimentally negligible

vas compared with the other coefficients of T. The 
effect of the kinematical interaction of the spin waves 
is obtained by recomputing the various coefficients of
vT in the expression of the spontaneous m tization
for some ferromagnets, and treating the magnons as quasi­
particles obeying intermediate stat ics.

Table 5.2 shows that the kinematical interaction 
can be neglected for ferromagnets with large exchange 
integral J values.

-ism6.2 Antif erromagnetism
Our expansion formalism can be extended to spin 

complexes in antiferromagnetism. ANDERSON (1952) presented 
an approximate quantum theory of antiferromagnets on the 
basis of the semi-classical spin wave theory, first
introduced by Kramers and Heller. The spin wave theory

&of antiferromagnets is far more complicated than that 
of ferromagnets. Following Anderson, Kubo (1952), in his
spin wave theory of anti-ferromagnetics used the formula­
tion devised by Holstein and Primakoff and using quantum 
statistics derived some thermodynamic quantities of anti-
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ferromagnets,
+ xQ n iWe report that in a consistent expansion of (1 — 2S~  ̂

up to wave-wave interaction only for antiferromagnets, 
and using quantum statistics, there exists some modifica­
tions in the thermodynamic quantities that were derived 
quantum statistically by Kubo,

In the antiferromagnetic case, where lattice is
assumed to be divided into two interpenetrating sublattices 
we introduce two different defini tions of the spin 
deviation operators, that is,

SxJ + 1Syj - f23^ 1 - a r  -j

i _ j .] & 1 2S1S . - is . = (2S) xj yj
S . = S-n.zj -j

(6,1-14)

For a spin j on one of the sublattices, say the (+)
lattice, and G

n
3X*-* 13yk = <23> X [1 - ijl*

S | — xS ,xk yk (2S)2[ 1 - 4Sj *b,
(6,1-15)n

2SJ ~k
^zk ~ '"S+nic

For a spin k on the other lattice, say the (-) lattice, 
the operators b and .b are naturally defined in the
same way as and a and satisfy the equation
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bk bk * nk- bkbk
* *

- bkbk ' 1 . . .  (6.1

The simplest form of the Hamiltonian of an antiferro- 
magnet is usually assumed to be

s S  < « >
Inserting equations (6,1-14) and (6.1-15) into equation

H - I J I . E, S . ,S. ex 1 1 ,k j ’ k

(6,1-17) we obtain

H- - - i N z | j | S ^  + z|j|S(En. + E n, )  ̂ j J icex

+ |jis y k{fs(nj)ajfs(\ )bk + aj fsCnj ^  W  •- (6-:

where

o . „i A >

fs(nk ) " (1 ~ 
We have

Hex = + ,,, (6,1
.+ En, )- k kwhere H° = - ^Nz|J|S^+z|J|S( Eny

4 |J|S
and

h1 ■ , !j is J y " i a] bk*aj * k bk + aj nj bk + aj V k >

* *
“|j|j^k(ajajbkbk)

- 1 6 )

-17)

.-18)

-19)

where X - (1 - ^ ) 2 1 • • ( 6 . 1- 20)
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Note that X contains all the coefficients of the two 
product terms as shown in the ferromagnetic case.
The classical treatment of spins in the limit of S ^  « 
is called the zeroth approximation, The first approxima­
tion is the approach by the Spin wave theory on the basis 
of the simplified Hamiltonian H°, By taking account of 
some of the higher terms omitted in the first approximation 
and applying the first order perturbation theory, we 
obtain the second approximation, and fortunately for us 
here, the results are convergent,

By the canonical transformation defined by

and using the following Fourier transforms, we have

Q
j

We introduce also the fourier components of the creation 
and annihilation operators by
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a, = = |CXU + X2X),'N'
*
LX

o i * -iAj i * *
jj) 23je = 2^X1X+X2X

bx - (l>iEV  1Ak - !<X1X-X2X>

. * ,2.i . * iAk. 1 * v .
bX = <N> “bke 5 (X1X_X2X>

where Xu  = qlx + iPlx , Xlx - qlx - *plx. 

p * =<p i x +p2 x ) 'V 2

«x -  -( % x + 0 2 x>//2  < J r
' S X “  ( P 1X -  P 2 A ^ /2 

RX = (0- l x -  °-2x ) / ' ' 2^ <  

is written as,

H1 = X|J|SN j ^ p K \ r t * * l 1\b1,bv , V A lk

.,, (6.

(6

Using the following averages,
.

" V x *  = ‘V l *  = 3 <qlX+PlX + q2x + Pe»-2>2A

<ax V  * <axbx ’ “ °> •
<a2> = <b2> = <a*2> = <b*2> = 0 

<axbx> = <ax V  = ¥<qlx-plx- q2X+P2l2>

. . .  C6.

1-22)

1-23)

•24)

1-25)
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To the first order of H , the Partition Function can 
be written as

F
e = Trace! exp(-H /kT)(l-H /kT)l

=[ Trace(expC-H°/kT) )1 (l-<H1>/kT) 

and the free energy as

= log [Trace(exp(-K°/kT))]-<H1>/kT

... C6.1-26) 

(6,1-27)

The derivation of (6.1-27) from (6.1-26) is known to be
unsatisfactory, from the mathematical point of view, but
(6.1-27) is rigorous in the first order approximation of
H1 . Noticing that all products of operators such as

* ^a^a^, a^b^, b^b^, a}a,, and so on have averages equal to 
zero, if the wave number A and y are different, we find 
that

„1 1<H > = -
where

(A+C) + N J (1+4AS)AC (6.1-28)

A *A = rrE<a, a >
\ > *2 *= rFE<b1b > NX x x

and C = Cj^)S<a^b.^> 
\

2 * *
= N ^ aihx>
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If we insert, the expressions of Eq and Ê , given in

table E-l in appendix E, we obtain the energy in the 
second approximation

E = - iNz|j|S(S+C -ACC2S'-1) ̂ 1 o o
— 1 4̂-1+ Nz|J|S(1+2XDCqS )C10

where C , and CL o ’ 1 are easily found in Apj jendlx E,
>P6na:

and
D is the Dimentionality of the lattice.
The following tables shows the ground state energies of 
antiferromagnets calculated respectively by Kubo and by us
using our method for s = ^

TABLE 6.2 - Ground state energies of antiferromagnets
(by Kubo)

( r
Lattice *

- - - - - 1 -Eo/(Nz|j|S/2)
Linear chain 
Quadratic layers 4
NaCl-type V  6

CsCl-type 8

S+0,363 + 0,033s-1 = S+0,363 + 0,066 

S+0,158 + 0.0062S-1 = S+0.158 + 0 .0 1 2  

S+O.OS7 + 0.0024S-1 = S+0,097 + 0 ,0 0 5  

S+0.073 + 0.0013S"1 = S+ 0.073 + 0 .0 0 3
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TABLE 6 . 3 -  Ground state energies of antiferromagnets
(by our technique)

Lattice z -Eo/(Nz|j|S/2)

Linear chain 2 S + 0,363 + 0,130
Quadratic layer 4 S + 0.158 + 0,024
NaCl-type 6 S + 0.097 + 0.009
CsCl-type 8 S -^9.073 + 0,005

Indeed our expansion formalism can be extended to 
antiferromagnetism, This i encouraging in view
of the recent researches (Mackintosh 1988, Sogo, 1987) 
which indicate that Spin waves in antiferromagnetism are 
relevant to high temperature superconductivity. In other 
words, unlike low-temperature superconductors which are 
diamagnetic, the age-old spin-wave theory may be the 
starting point for the exciting new phenomenon of super­
conductivity in antiferromagnetics. YIe envisage that, 
since an antiferromagnet is essentially an interlace of 
two ferromagnets, our investigations reported here will 
be highly germane to the current effort to understand 
high temperature superconductivity and ferromagnetism
itself.
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6.3 Conclusion
The Developed Formalism of Holstein-Primakoff-Oguchi 

actually deals with a system consisting of some abstract 
quasi-particles whose statistical behaviour is to be 
determined, A point of view suggests that such a gas 
consists of quasi-particles whose field amplitudes obey 
a set of commutation relations. Therefore it looks as 
if the system is a system of Bosons, However such a 
boson system is not real owing to the fact that the 
occupation number operator a+a . is restricted to the
eigenvalues n^ = 0,1,,..,2S whereas the real boson system 
would require also the eigenvalues for nj>2S, As we 
know, these latter values are unphysical. However, there 
are tso limiting situations, where the boson picture 
represents a fair approximation to the real system, The 
first is the case where S is large enough to justify
the use of commutation relations for bosons, The other 
case is that of the Dynamical behaviour of the system in 
the ground state or state very close to it,
In both cases, NOVAKOVIC (1975) and OGUCHI (1959)
considered the operator a+a./2S when applied to the. J J
eigenvectors as a small quantity compared to unity,



Therefore expansions were made in powers of a.a./2S toJ J
some order to investigate the thermodynamic properties 
of an exchange interaction acting between the ferromagnetic 
spins at low temperatures,
In our work, we have expanded a*a./2S to all orders in S

U J

and we have shown that in a consistent expansion of

a -ja -i a
y s )  - (i - -is1 ) 2

else,up to wave-wave interaction for Heisenberg Ferromagnet 
of N spins in a physical volume VQ each of spins S, 
with z nearest neighbour nd J>0, the quantized spin
waves called magnons at temperature T are Bosons with 
effective chemical potential p.
The existence of wave-wave interaction and hence of non­
zero p gives rise to a lowering of the thermodynamic 
internal energy and entropy. The spin waves, on the 
average thus form spin complexes, The wave-wave-wave 
interactions is negligible in comparison with the wave- 
wave interactions,
The dynamical term which is depicted by the coefficient

4of T is both numerically and experimentally negligible,
vas compared with the other coefficients of T.
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The kinematieal term accounted for with intermediate 
statistics is negligible for ferromagnets with large 
exchange integral J values.

The phenomenon of magnetism still remains 
incompletely understood, even though it is one of the 
oldest observed in the annals of physics. In the quest to 
elucidate it, spin-wave theory remains an amenable theory 
at low temperatures, Within the theory, for both Ferro- 
and antiferro-magnetism, our expansion formalism 
simplifies, the logic of spin wave- spin wave interaction 
by enabling one to treat the waves as ideal magnons with 
effective chemical potential and obeying Bose-Einstein 
or intermediate statistics,

6.4 Suggestions for Further Work
Our work is basically on the Ferromagnets, The 

following are some suggestions for further research
work

(i) A consistent expansion of (1-a a/2S) (i) 2 up to
wave-wave interactions can be done for the 
antiferromagnets as we have attempted and 
outlined in the discussion (section 6,1), the 
perpendicular susceptibility can be examined 
and its dependence on T obtained,
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(ii) The fundamental question "Are the magnetic 
electrons localized or itinerant needs to 
be fully answered,

(iii) The intimate link between magnetism and super­
conductivity in the high temperature supercon­
ductors can be found since the progenitor of the 
high temperature superconductors, LaCuO^ exhibits 
antiferromagnetism, even though band calculations 
indicate that the exchange interaction is far 
two small to induce magnetic ordering in a pure, 
perfect crystal,
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APPENDIX A

COMMUTATION RULES

To show that the spin operators satisfy the commuta­
tion rule

The spin operators are written in the following forms
J r

aj %  - aA  = sJlt

S+ = (2S)zfa, S_ = (2S) 2 a+f 
where

+ 1 o +
f 1 &_& \ 2 2 __ -- R_Rx L-l - 2S ; ’ 1 ~ 2S
writing e = [fa,a fl = f[a,a fl + [f,a fla

= f[a,a+lf + fa+[a,fl + [f,a+]fa + a+[f,fla

Cl)= faf + fa+%j/ y+fa

[a,fl+ = (af-fa)+ = fa+ -a+f = [f,a+] 
where

+ A T
a = [a,a+], y = [a,f] or af-fa = y 

(f2,a+£ V f [ f , a +l + [ f , a+] f - - ,a+] = ^

[f2,al' = f[ f ,a]+[ f,ajf = - , a] = +§|

• _ -a a1 • ® * Y + Y f 2C C4)•. < *
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fy+yf = -aa
2S , C4»)

[y,fl = [[a,fj,fj i= [af-fa,f] = aff-faf

= aff-ffa-2fY - [a,ffl -2fY = ^  -2fy

= -faf+ffa p aff+ffa-2faf = aff+ffa - 2fCfa+y)
4 .| | - 2iY

« o —aa 0n n aa „yf-fy = oq ' 2fy or yf = - rjg - fy2S

+
U  -Y+f - / f  - - g  -fr+ \

e = aff+fa+y+Y+fa = aff+fa+Y-fY+a -

" - 2Sa+a + f (a+y-Y+a ^ ^ ^ '

a a

+ +r _ | + „ +a y = a la,fj = a af-a fa
+  n +  +  ny a = fa a-a fa
+ + + + a Y-y a - a  af-fa a = 0

2Se = 2S(aff-a|^) p 2SaCl - ^ ) - a a +a = 2«CS-a+a)
= 2(S-a+a)

N J

...C5)

» • t (51 )

( 6 )

C7)

( 8)

(9)

i
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APPENDIX B 

PADE APPROXIMATES

The Pade approximants are a particular type of 
rational fraction approximation to the value of function. 
The idea is to match the Taylor series expansion as far as 
possible. For example, we would like to pick an appro­
ximation of the form

(a+bx)/(c+dx) & CB1)

so that it would tend to a finite limit as x tends 
to infinity. We denote the L,l! Pade approximant to A(x)

b y  < ^ r
[L/M] = Pl OO/Q jjCx ) ,,, (B2)

where PL(x) is a polynomial of degree at most L and 
Q m(x ) is a polynomial of degree at most M, The formal
power series

s >:x)A(x) = .r a .x‘ J=o j / * • ( B3)
• • * determines the coefficients of P^(x) and Q^x) by the

• \
equation

A(x )-Pl (x )/Qm Cx ) - 0(xL+M+1) .,, (B4)

Since we can obviously multiply the numerator and 
denominator by any constant and leave [ L/Ml unchanged, 
we impose the normalization condition
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Q,jjC° ) ~ l . Q CB51

Finally we require that and Q̂ j have no common
factors, If we write the coefficients of P^Cx) and
as

p Cx) = Pq+P-jX* ,,, + PxxL,
y y S T  ” • CB6)

QmCx ) - l+q-̂ x + ttt + qyc1

then by eqn, (B5) we may multiply eqn,CB4) by 
which linearizes the coefficient equations, We can 
write out eqn,(B4) in more detail as

" Poo
al+aoql
a2+alql+aoq2

V aL-lql*’' '+aoa-L
aL+l+aLql+ ’',+aL-MtlQM ” 0 

+a

= P,

- PL

aL +M ’ ttL +M, -1H1
< K /where we define

q1+,,,*aLqM - 0

. . .  (B7)

a = 0 if n<0 and q, = 0 if j>m n j ,, CBS)
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APPENDIX C

CUBIC LATTICES

Basic features of the simple, body centred, and 
face centred cubic lattices are given in table below.

Unit cell volume 
Nearest-neighbour distance 
The number of nearest neighbours z 
The number of sites per unit cell

a
a/3/2
8
2

Face
CentredLattice SlmPle J10??Centred

A 6 

1Using these data the following sum is readily calculated

• - ik.(R,-R„)J ... C(l)

a
a//2

12
4

J(k) - Z eXp[ik.(Rr Bt

1 Z
- Z Cos ... C(2)

with R . = (0,0,0), R£ - (X^, , Z^}

The Reciprocal lattice vector is defined by

k tf*{k , k , k } x ’ y ’ z
kCos(j)Sin0

k^ = kSinc()Sine 
k„ = kCose

... C(3)

Nearest-neighbour distances are given below
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Table CC1) ~ Nearest-neighbour distances on a simple cubic 
lattice in units a

1 1 . 2 3 4 5

X 1 -1 0 0 0

Y 0 0 1 -1 0

Z 0 0 0 0 1

Table (C2) - Nearest 
centred

-neighbour Distances 
cubic lattice in un:

£ 1 . 2 3 4 5 7 8

X 1 1 - 1 - 1  1 -1 -1
Y -1 1 1 - 1 - 1  1 1 - 1

r yZ 1 1 1 1 -1 -1 -1 -1

Table B3 - Nearest-neighbour Distances on a face centred 
cubic lattice in units a/2

« 1 £ /  3 4 5 6 7 S 9 10 11 12
—

X -1 -1 0 0 0 0 1 1 -1 -1

V 1 -1 1 -1 1 1 -1 -1 0 0 0 0
z 0 0 0 0 1 -1 1 -1 1 -1 1 -1
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The Fourier transform is expressed as follows, for a 
simple cubic lattice

J(k) = ^lCos(k a'J+CosCk al+Cos(k a)l o x y z

For a Body centred cubic lattice,

k ak a
J(k) = JCos Cos

k a _ .
x —  z_ cos -§-

A . ™

For a face centred cubic lattice,

k a x k a 
s -J-]. . * ■JCk) *= Cos + Cos + Cos

Introducing the abbreviations,

/Cose = y 

Sine = <S,
v ( /The Fourier transform can be written

Cos<j> = a 
Sin<}> = 3

(C8)

. , (C6)

J C k ) \ J h l  - +AO,e)(ka)4~BC<J>,e)(ka)6+, . .} ... (C7)

where the expansion coefficients are given by, for a simple 
cubic lattice, .
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A = y7>{(aS) + (g<S)̂  +

B ~ 2T60Ua6)4 + ^ <Ŝ6 +

For a body centred cubic lattice,

(C8)

A “  ( a 6 ) 4 + ( g 6 ) 4 + y 4 } + + ( a g ) B <$4

B =

384

-.{(a6)B + C3 6)6 + yB}
2°,6

}

1 t 2 4 6  A r n 2 4  , .2 47 jia g 6 + QaS) y + C3<5) y
2 .4
4„2 ,6 . 4 2 „4 . 4+ a ~ g “ S~ + a"‘ y “ 6 “' +

^ c “ 6 v ) 2 s 4 ;  ( y -

For a face centred cubic lattice,

A <- 2'gg  ̂ )4 + C3«S)̂  + y^}

(C9)

B ~ Ca6 )^+( 3<5 )B+yB> ,,, (CIO)
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APPENDIX D 

ON SOME INTEGRATIONS

In the present analysis we use integrals of the form,

InCx] =
2x1+2, q dq

° exp[ Cl-n 1 -1
-

where n = 0,l,2,.,,,n is some parameter such that 
t\ > 0, t is a dimensionless temperature defined by

(Dl)

T ri kT
2SJ (D2)

By the substitution Q-^n]

we obtain,

,,, CD3) 

CD4)

CD5)

TCV) 1 /tp/2 1 3/tt/4 2 15/tt/8

The Riemann Zeta Function
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3
2

5
2

7
2

9
2v — 2

e(v) 2.612 1,645 1.341 1,202 1,127 1.082 1,055

also use integrals of the form
00 2tT 7T

Jn(x) =

where 

1

da d<f>
) 
o

Sin0d0 —
2n+2

exp x-1

. . &x = (l-n)(qa)‘i-zAC<}>,e)(qa)‘:t+zBC<f>,e)Cqa)6+ t ,,]

We introduce the substitution

X = C(l-Dq2+Eq4)q2 ,

C = 4(l-n)a2 ,

D = zAU > 9 ) a' 1-n

E = 6

Cq“ = ----- \---4- * x[ l+Dq2-Eq4+(Dq2-Eq4 )2]2 -----f—l-(Dq -Eq’ )

(D7)

(D8)

,..(D9)

„ 2 ^  X D ^ 2D“-E 2 .Cq = x ( l  + p X  + ------ p— x + , , . )

= x{l+zA(4),e)Cl-n)“2Tx + [ 2z2A2(<j>,e)Cl-n)"4

- zB( ij), 0 ) (1-n )~31 Ct x )2+, , . } ,,.(DIO)



180

There follows the result of Integration for the integral

■ v

V O  - K 3 / 2
2 TT 
d(j> 

o o
Sinede x 3 f(x ) dx 

exp x-1
o

where

f(x) = 1 + |zA(<j>, 0 )(l-n)"2tx+[ 8z2A2(>,6)(1-n)”4 * (tx)2+., ,
2tt

4.

L2 =

d<}> A(<j>,0)Sin0d0

IT

h  ~ J

O O
2tt
d<J> 

o o
2ttr ^

dcj)

2 ^  A ($,0)Sin0d0

B(<t-,0)Sin0d0

Therefore by virtue of equation (C4) and (C5) the integral
J becomes o

(1) + 5z t rr3 + 4 L i r(2

-4 - ^ L 3 (l-n)

-2

v 2,[4z“L2Cl-n)

For hexagonal close packed lattice, we have 

1 12 1 12= — ECosk.R = rj .21Cos(k x +k y.+k zn)=̂1 Z £ =1 v x % y31 zvCk)
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( k x  + k v  + k z  Y 
Cos(k x +k y +k z ) = 1 - — ------

X XL y J 2 !

4 f?(k x + k y + k z n) Ck x + k y + k z )X XL y J XL Z XL v X Z  XL1
4! 6!

1 12 (kx V  kvyt + kzZ£) 1 12** V --- ±  D"O,0)(ka)12

§ F

12 £=1 
where

12
D"(*,e) = 4  J ^ + k *  ^  y2 + k2

From our table

12 12 12
2k k E1 x z = 2k k ,1.x z„ 1 2k k t-yz, = 0 y X t = l l  XL x  Z t = l XL XL z t=l'> l  l

12 (k x + k y + k z )4 -v x XL y-̂ t z £ _ 1 Alt/, „w ,__x4
^ 1 4! = ^  A" C (}>, 0 ) ( ka)

12AM<. „x r ,4 4 , ,4 4 , ,4 4 , ..2. 2 2 2  A"(*,e) = til kxx, + kyyt + kzzt + 6kxkyXlyt

-.2. 2 2 2 _ 2 2 2 2 ... 3, 3+ 6k k y  z, + 6k k x„z. + 4k k x„y„ yz-'tt x z XL XL x y XLy XL

+ 4k2k x2z + 4k2k x ny2+ 4k2k y2z„ x z t t y x XL l y z ‘t t

4k^k x z2 + 4k2k y z2 )z x t t  Z  V J XL XL '
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12 ( k ^ t  kyyt+. kazt)6 j 
Z = 1 6! yfo E”Oi>,e)(kar

B"(*,e) = + k®y® + k®zt + *  7$ y V *

4, 2 4 2 2,4 2 4 4, 2 4 2 4,2 4 2+7k"k y„x. + 7k kx„z„ + 7k k x.z„ + 7k k y.z. y xJZ Z x zrz Z x z Z Z

+4k^k x̂ y„ + 4k^k x^zn + 4k^k x y; + 4k^k ŷ z. x y zyz xrz z z y x z*z

5 ,  5  , ,  5 ,  5  Q, 3 , 3  3  3  O I 3 , 3  3  3+4k k x z + 4k k z v + 8k k x„y. + 8k k z.y. z x Z Z zy ZJ Z z y Z* Z

x0,3,3 3 3 x 1C, 3, 2, 3 2 ^ 3. 3 2+8k k x z + 16k k k y„zAx„ + 16k k k yAz„xA z x z Z y x zJz Z Z x*z Z Z

+16k? y k"zX?t z : + 16k K k z y M  16kz V y W t
3, , 2 3 2 3, ,2 3 2

x1c,3. ,2 3 2 x 10,2,2.2 2 2 2 , 1014. , 4 +16k k k v„z.x„ + 18k k k x„y.z. + 12k k k xAyAzA y x z7i z Z y z x Z*Z Z x y z Z

+12k4k k yfx.z + 12k k k4xnynzf + 2k\ x^y y x z J Z Z Z xy z x y r  Jl

-u2k5k x v W k  x^z +2k\ xnzf +2k\ V„zn y x ZJ Zx z Z Zz x y z'vZ Z

. 5 ,  5 ^ . 4 , 2  4 2 X 0,4,2 2 4 , ot4,2 4 2+2k k z v +8k k x.y. + 8k k x.y. + 8k k xAzA z y ZJZ x y ZJZ Jr £ x z

+8k̂ k̂ xfẑ +8k^k^yfz0+8k̂ k*vfzf +18k^k k x.y zf z x z Z y z Jz Z z x y Jr
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4 4 4 4 ■ *3 q *3 *3+18k k k xfzj„ + 18k k k x"yz„ + 12k k x yy x z it Z* Z x y x y JT£

^0,3,3 3 3 ^ 101.3t3 3 3 ^ _ot 2T 2, 2 2 2 2 +12k k y z + 12k k x z„ + 72k k k x„y.z„y zrz Z x z z Z

+44k3k2k x2z3y + 44k3k2k y2z3x + 44k3k2k y3z2 z x y Z ZJZ zyx^ititit y z x' fc

^,,3,2, 3 2 . ...3, 3t 3 2 , ... 3T 2, > 3 2+44k k k x„z„y„ + 44k k k y„x„z„ + 44k k k x.y.z » x z y Z Z*Z y x zJz Z Z x y z  Z
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APPENDIX E

TABLE El: Thermodynamical quantities of antiferro-
magnets calculated by the spin wave theory,

Quadratic
Layer NaCl-type CsCl-type

S+0.097S+0,158 S+0.073

4.808 a3OTT
3 = ^ 2  4

5?- 33/2,283
15

S-0,078

4*2e4
15

7.212 Q 2 

S-0.127

i« 2 316 TT 6
'45

S-0.075

(7 log 34 02 
2 9 2q2

3*

4  l0g ̂ )92 3* e3 1 03 
3 9

7 l0g 2a finite 0.396

l , 2ira
£/*_1 2 
’ (20)*

4 i .2 
* (2*)*’

14,424 q2
• TT

33/2 2.3
15 ’ 9

16 2.3 
l T  7

Linear
chain

Eo
(§)z|j|S 

Nz | J | S

sT
TOE
Mso

M^r

N? a
kT

8Ao
72 2 n y S O

S+0,363

ifi23 6

3*8

x log2a 

C2ir)“ 0̂

(2a"

X -  a & W„2 2 -\ u 
£  O

Xk
2 Q
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