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Abstract

It is proved that the homology of an induced abelian group with coef-
ficients in the different G— modules occuring in its projective resolution
are isomorphic.
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1 Introduction

The projective resolutions of R — modules are of vital importance in the study
of (co)homology of groups as evident in literature such as [2],[3].

This work is an investigation of the homology of an induced abelian group
with coefficients in the subgroups occuring in its free resolution. It is known
that an abelian group G admits a resolution of length at most 1. [2]

The objective here is to investigate some properties of the homology of the
group G with coefficients in K and H appearing in the said resolution.

The methods of homological algebra presented in [2] are used in this study.
To do this, we consider the abelian group G as a Z— module and the groups
K and H as G— modules.

We see that the application of the torsion functor on the projective resolu-
tions ultimately yields some vital exact sequences.

Using these exact sequences it is proved here that the homology groups of
the induced abelian group G with coefficients in the different G- modules K
and H are isomorphic.

2 Projective Resolutions and Homology of Groups

Definition 2.1 Let P = {P,,d,} be a positive exact chain complex of pro-
jective (free) R— modules i.e. 3 H,(P) =0V n >1 and let us assume that

it also satisfies that H,(P) = M. We will write it as follows

O On— o
pP. ...2mp = PSP M-—0

and call it a projective (free) resolution of an R— module M.

Definition 2.2 The n-th homology group of a group G with coefficients in
a left G—module N is

H,(G;N) = Tork%(7, N)

3 Homology of an Induced Group

The homology group as defined above depends of course on the G-modules
from which the coefficients are drawn. Thus for example we have H,(G, N) =
N ®z G/|G,G] for any trivial G-module, and in the particular case where
N =7, H\(G,Z) = G/|G, G] (see page 20 of [2]). The result that follows has
to do with the isomorphism of homology group of a group with coefficients in
different G-modules.
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Theorem 3.1 Let G be an induced abelian group of the form G = ZG ®z B
(B a subgroup of G) admitting a resolution
0 —K—H—G—0 (1)

Then
H,(G,K)®H,(G,H) ¥V n>1

Proof: Let G be an abelian group admitting the resolution (1). Then by Propo-
sition 2.4 of [2] the abelian groups K, H and G possess projective resolutions
P(K), P(H), P(G) respectively as follows:

p([();..._>pkna_”>pk(n_1)a"_*§...ﬂ>pklﬂpko_%[(_m
a7 8/_ 8/ a/ E/

P(H) = Py 25 Popgy 22 25 Py 25 Pg 5 H — 0
/" 8;{7 a// 8” 6"

P(G):"'—”Dgni”Dg(nfl)—1""—2> st — P —> G — 0

We then obtain a short exact sequence of chain complexes which can be dis-
played as follows:

0 - P(K) % PH) £ PG - 0

! ! !

0 — Pkn &; Phn ﬁl’ Pgn — 0
1 0, 1, Lo

0 — Py = Prn-1) S Py — 0
'l an—l l a;z—l l 87/’:—1 (2)
1 0 1 04 1oy

0 — Pu % P A Py — 0
Lo Lo Loy

0 — Fro = P il Pyo — 0
le lGl lell

0 — K 5 H - G — 0
! ! !
0 0 0

Applying the functor Z ®;c — to (2) gives:
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0 - Z®cP(K) — Z®cPH) — ZQucP(G) — 0

! ! i

0 — ZQyaPun — Z.Qya Pin — 2 Qgzc Py, — 0
l1®0, l1®a, l1®a!

0 — Z®z¢Prn-1) — ZQzaPan-1) — Z®zgFPym-1 — 0
1 1T® 0, 11® 0, 11®d)

0 — Z®zgPu — Z Qg P — 72 Qzc Pp — 0
l1®o 11®9 11®9)

0 — ZQyaPuo — 7 Qza Puo — 2L Rz Py — 0
l1®e 11®¢€ 11®€

0 - ZQucK — L ®zcH — Z QG — 0
! l !
0 0 0

Forming

H*(Z Rza P(K)) = {Hn(Z Rza P(K)}nzo
H(Z @76 P(H)) = {H,(Z ®z76 P(H)}u>0
H(Z @76 P(G)) = {H\(Z @76 P(G) }nxo

and suppressing K, H and G in their respective projective resolutions we then

obtain from(3) the following:
0 — H.(Z®z¢ Px) — H.(Z ®zc Py) — H.(Z®zq Pa) —

o
!

SRR
e

.l
2 Rz Pk) — Hy(Z®uaPu) — Hy(Z®yePs) —
! il !
0 - Hy1(Z®ycPx) — Hn1(Z®zcPy) — Hpa(Z®zcPe) —
! ! !
| ! !
0 — Hl(Z®ZGPK) — Hl(Z®ZGPH) — Hl(Z®ZGpg) —
! l !
0 — Hy(Z ®z¢ Prx) — Ho(Z @y Py) — Hy(Z ®z¢ Pe) —
! il !
0 0 0

By theorem 2.3 of [2] we obtain from (4) the following long exact sequence:

0
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Kn
<+ — Hp(Z ®76 Px) — Hp(Z @76 Py) — Hp(Z @z Po) —

s Hy \(Z ®76 Px) — Ho1(Z @76 Py) — Hp1(Z @76 Pg) 22 -
ko .
T Hl(Z ®ZGPK) - HI(Z Rz PH) — Hl(Z R7za Pg) —

+5 Hy(Z @26 Px) — Ho(Z @6 Pu) — Ho(Z &6 Pe) — 0
and defining

Tor’S(Z,K) = H,(Z ®7¢ Px)

Tor’S(Z,H) = H,(Z ®76 Py)

Tor’S(Z,G) = H,(Z @z Pg)

we get:
oo — Tor’8(Z, K) — Tor’%(Z,H) — Tor:%(Z,G) —

— Tor’% (7, K) — Tor’%(Z,H) — Tor*%(Z,G) — - -
oo — Tor!S(Z, K) — Tor’%(Z, H) — Tor*%(Z,G) —
— Tor5%(Z,K) — Tork%(Z,H) — Tor¥%(Z,G) — 0.
Putting
H,(G,K) =Tor’%Z, K)
H,(G,H)=Tor’%(Z, H)
H,(G;G) = Tort%(Z,G)
etc.
we get:
-+— H,(G,K) — H,(G,H) — H,(G,G) —
— H, 1(G,K) — H, 1(G,H) — H,_1(G,G) — - -+
-+ — H(G,K) — H{(G,H) — H{(G,G) —
— Ho(G,K) — Hy(G,H) — Hy(G,G) — 0

Since G = ZG ®gz B it follows from page 96 of [1] that
H,(G,G) =Tor’%(G,G) = Tor%(Z,7.G ®z B) = 0
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we then obtain short exact sequences
0— H,(G,K) — H,(G,H) — 0

0— H, 1(G,K) — H, 1(G,H) — 0

0— Hi(G,K) — Hi(G,H) — 0

Hence
H,(G,K)®H,(G,H) V n>1.
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