
Journal of Quality Measurement and Analysis              JQMA 15(1) 2019, 53-64 

Jurnal Pengukuran Kualiti dan Analisis     
  

COMBINATORICS OF COUNTING DISTINCT FUZZY SUBGROUPS OF 
CERTAIN DIHEDRAL GROUP 

(Kombinatorik Membilang Subkumpulan Kabur Berbeza bagi  

Kumpulan Dwihedron Tertentu) 

OLAYIWOLA ABDULHAKEEM & ENIOLUWAFE MICHAEL 

 

ABSTRACT  

This paper is devoted to counting distinct fuzzy subgroups (DFS) of finite dihedral group D2n, 

where n is a product of finite number of distinct primes, with respect to the equivalence 

relation ≈ . This counting has connections with familiar integer sequence called ordered Bell 

numbers. Furthermore, a recurrence relation and generating function was derived for counting 

DFS of D2n. 

Keywords: dihedral group; equivalence relation; fuzzy subgroup; Bell Number; generating 

function  

 

ABSTRAK 

Dalam makalah ini dibincangkan tentang pembilangan subkumpulan kabur yang berbeza bagi 

kumpulan dwihedron D2n, yang n adalah hasil darab terhingga nombor-nombor perdana yang 

berbeza, bagi hubungan kesetaraan ≈ . Pembilangan ini berkaitan dengan jujukan integer yang 

dikenali sebagai nombor Bell bertertib. Tambahan lagi, suatu hubungan jadi semula dan fungsi 

penjanaan diperoleh untuk membilang subkumpulan kabur berbeza bagi D2n. 

Kata kunci: kumpulan dwihedron; hubungan kesetaraan; subkumpulan kabur; nombor Bell; 

fungsi penjanaan  

 

1. Introduction 

Counting distinct fuzzy subgroups (DFS) of finite dihedral groups is a fundamental 

combinatorics problem. Research had focused on counting DFS of finite dihedral groups with 

respect to the equivalence relation ≈ , see Tarnauceanu (2016). However, literature on DFS of 

dihedral groups D2n, (where n is a product of finite number of distinct primes) is scarce. This 

research, was therefore designed to establish a recurrence relation and a generating function 

for counting DFS of D2n with respect to the equivalence relation ≈ . 

The equivalence relation ≈ used in our counting is preferred to other equivalence relation 

as its yields fewer numbers of  DFS of  dihedral groups D2n  and its  definition involves more 

group theoretical properties compared to other equivalence relation known in literature. For 

classification of fuzzy subgroups using other equivalence relations, see Tarnauceanu (2012), 

Murali and Makamba (2001; 2003). It is clear from Tarnauceanu (2016), that the formula 

obtained for counting the number of DFS of finite groups with respect to ≈ involves many 

concepts namely; order of automorphism group, automorphism group structure, group 

actions, subgroup lattices and Burnside’s Lemma. This technique is very numerous, therefore, 

a bijective correspondence was established between DFS of D2n and the number of chains 

subgroups which ends in D2n, fixed by a certain element of automorphism group of dihedral 

group Aut(D2n). This number of chains of subgroups which ends in D2n, and fixed by a certain 

element of Aut(D2n) forms patterns that has relationship with a familiar integer sequence 

called ordered Bell number. Finally, we derive a recurrence relation and generating function 
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for counting DFS of D2n  which generalizes the result obtained by Olayiwola and Isyaku 

(2018). 

The paper is divided into five sections. Section one gives the literature and introduces the 

problem statement as above. In section two, we give some preliminary definitions and in 

section three we give an overview of the new equivalence relation ≈ as introduced in 

Tarnauceanu (2016). In section four we derive a recurrence relation and generating function 

for counting DFS of D2n. Finally, the last section gives the conclusion and a summary of our 

results. 

2.  Preliminaries 

Given an arbitrary non empty set X, a fuzzy set (on X) is a function from X to the unit interval 

I : [0,1]. That is 

 

φ : X → I 

 

Let G be a group and F(G) be collection of all fuzzy subsets of G. An element φ of F(G) is 

said to be a fuzzy subgroup of G if it satisfies the following two conditions: 

 

 φ(xy) ≥ min{φ(x),φ(y)},∀x,y ∈ G. 

 φ(x−1) ≥ φ(x),∀x ∈ G. In this situation we have φ(x−1) = φ(x), for any x ∈ G, and φ(e) = 

max{φ(G)} = sup{φ(G)}. 

 

The set FL(G) which consist of all fuzzy subgroups of G forms a lattice with respect to the 

usual ordering of fuzzy set inclusion called fuzzy subgroup lattice, see Tarnauceanu (2012). 

For any α ∈ [0,1] the level subset is defined by 

 

φα = {x ∈ G | φ(x) ≥ α}. 

 

Thus, a fuzzy subset φ is a fuzzy subgroup of G if and only if its level subsets are subgroups 

of G. 

Let Ω be an arbitrary non empty set and G be a group. An action or operator ρ of G on Ω 

is a map Ω × G → Ω satisfying the following axioms. 

 

 ρ(ω,g1,g2) = ρ(ρ(ω,g1),g2),∀g1,g2 ∈ G and ω ∈ Ω; 

 ρ(ω,e) = ω,∀ω ∈ Ω. 

 

Group actions generalize group multiplication. If G acts or operates on Ω so does any 

subgroup of G. Ω is called a G-set. Notice that it is not necessary for Ω to be related to G in 

any way. However, group actions are more interesting if the set Ω is somehow related to the 

group G. 

It is well known from literature that, every group action ρ of G induces an equivalence 

relation Rρ on Ω defined by ωRρν if and only if ∃ g ∈ G such that ν = ρ(ω,g). The quotient set 

with respect to action ρ, is called the orbits of Ω. Let 

 

FixΩ(g) = {ω ∈ Ω | ρ(ω,g) = ω} 

 

be the set of elements of Ω that are fixed by g. If both G and Ω are finite, then the number of 

distinct orbits of Ω relative to ρ is given by; 
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known as Burnside’s Lemma. This results has been applied by Tarnauceanu (2016) for 

counting the number of distinct fuzzy subgroups of some finite groups G. 

3. Overview of the New Equivalence Relation on FL(G) 

Let G be a finite group, then the action of Aut(G) on FL(G) is given by 

 

ρ : FL(G) × Aut(G) → FL(G),  

 

where ρ(µ, f) = µf, is well defined for every µ ∈ FL(G) and  f  ∈ Aut(G). 

This action induces an equivalence relation on FL(G). Since every fuzzy subgroup of G 

determines a chain of subgroups of G which ends in G, then this action can be seen in terms 

of chains of subgroups of G. Let C  be the set of chains of subgroups of G terminated at G, 

then the previous action of Aut(G) on FL(G) can be seen as action of Aut(G) on  C  and the 

previous equivalence relation is seen as equivalence relation induced by this action. An 

equivalence relation is then defined on  C  in the following manner: For two chains, 

 

C1 : H1 ⊂ H2 ⊂ ··· ⊂ Hm = G and C2 : K1 ⊂ K2 ⊂ ··· ⊂ Kn = G 

 

of  C  , we set 

 

C1 ≈ C2   m = n and ∃ f ∈ Aut(G) such that  f(Hi) = Ki  ∀i = 1,2,··· ,n. 

 

The orbit of a chain C ∈ C is now given by { f(C) |  f ∈ Aut(G)}, and the set of all chains  C  

that are fixed by an automorphism f of G is FixC(f) = {C ∈  C |f(C) = C}. From Burnside’s 

Lemma, the number N of distinct fuzzy subgroups of G is given by   

 

 
( )

1
| ( ) | .

| ( ) | C
f Aut G

Fix f
Aut G 

  

 

We remark that the formula above can be used to calculate the number N of DFS of any finite 

group provided the Lattice subgroup L(G) and the automorphism group Aut(G) of the group 

are known. For details on the new equivalence relation and the formula see Tarnauceanu 

(2016). 

4. Distinct Fuzzy Subgroups of D2n 

In this section, we establish a bijective correspondence between the number of DFS of D2n and 

the number of chains of sets subgroups fixed by a particular element , 2( )nf Aut D   . 

Furthermore, we derive a recurrence relation and generating function for counting DFS of 

D2n. However, we begin by giving some properties of dihedral groups that are well known 

from literature. 
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4.1. Properties of dihedral groups 

 Dihedral group D2n of order 2n with generators a,b for n ≥ 2 has presentation given by 

 

 
2 1 1

2 , | 1,n

nD a b a b bab a      

 

From Tarnauceanu (2016), the automorphism group of D2n is also well studied and is given by 

 

 2 ,( ) | 0, 1, =0, 1nAut D f n n        

 

where 0, 1n  are integers from 0 to n-1. 

 

, 2 2: n nf D D     

 

is defined by , ( )i if a a

    and , ( ) ,  0, 1.i if a b a b i n 

 

     The order of 

automorphism group of D2n is given by; for n ≥ 2, |Aut(D2n)| = |nφ(n)|. The structure of the 

subgroup lattice L(D2n) of D2n is also known: for every divisor r or n, D2n possesses a subgroup 

isomorphic to Zr, namely  /

0

r n rH a , and  n

r
 subgroups isomorphic to Dr, given by  

/ 1
., ( ) , , 1,2, ,

ni i r n r i

i r
f a a H a a b i

 

    . Now for each , 2( )nf Aut D   , let Fix(fα,β) 

be the set consisting of all subgroups of D2n that are invariant relative to fα,β, that is 

 

Fix(fα,β) = {H ≤ D2n|fα,β(H) = H} 

 

A subgroup of type 
0

rH  belongs to Fix(fα,β) if and only if (α,r) = 1, while a subgroup of type 

r

iH  belongs to Fix(fα,β) if and only if (α,r) = 1 and n

r
  divides (α − 1)(i − 1) + β. Now 

computing |FixCfα,β| implies counting the number of chains of L(D2n) which ends in D2n and are 

contained in the set Fix(fα,β). 

4.2. Recurrence relation for counting DFS of D2n 

In  establishing a bijective correspondence we consider many cases and apply the above 

properties. 

4.2.1. Case where n is a prime number p  

Observe that for any dihedral group D2p, there exists an element f2,0 ∈ Aut(D2p) such that, 

 
1 1

2,0 0 0 1 1( ) { , , , }p pFix f H H H H , and |FixC(f2,0)| = 6. 

 

However, 6 corresponds to the number of DFS of D2p. This shows that there is a bijective 

correspondence between the number of DFS of D2p and |FixC(f2,0)|. It also shows that the 

number of DFS of D2p is invariant with respect to the choice prime number. 

We illustrate this case by using the following example; 

 Let p = 3, that is D2×3 = D6. We proceed as follows. Aut(D6)= {f1,0,f1,1,f1,2,f2,0,f2,1,f2,2} . The 

sets of subgroups invariant with respect to each element of Aut(D2p) are 
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Table 1: Subgroups fixed by 6( )Aut D  

    ,( )Fix f    

1 0 {All  lattice subgroups of D
6
}  

1 1,2 
1 3

0 0 1

3
{ , , }H H H  

2 0 
1 3

0 0 1

3 1 3

1 1
{ , , , , }H H H H H  

2 1 
1 3 3

0 0 1

1

3
{ , , , }H H H H  

2 2 
1 3

0 0 1

1 3

2
{ , , , }H H H H  

 

The following values are then obtained from the chains of subgroups fixed by each elements 

of the automorphism group: 

 
1,0

| ( ) | 10Fix f   

 
1,1 1,2

| ( ) | | ( ) | 4Fix f Fix f    

 
2,0 2,1 2,2

| ( ) | | ( ) | | ( ) | 6Fix f Fix f Fix f    

The number Ak ( k is number of distinct primes) of all distinct fuzzy subgroups of D6 is; 

 

1

1
[10 (4 2) 6 6 ]

6
6 6A         

 

Observe that k = 1 from the above example. 

4.2.2 Case where n is a product of two distinct primes 

 In a similar manner we can establish a bijective correspondence between the number of DFS 

of D2n,where n is a product of two distinct primes, that is 
1 22 p pD  and |FixC(f2,0)|. Observe that 

for 
1 22 p pD , there exists an element f2,0 ∈Aut(

1 22 p pD ) such that

1 2 1 2 1 2 1 21 1

2,0 0 0 0 1 1 0 1 1( ) { , , , , , , , }
p p p p p p p pFix f H H H H H H H H , and  |FixC(f2,0)| = 26. This value 

also corresponds to the number of DFS of 
1 22 p pD . This shows that there is a bijective 

correspondence between the number of DFS of 
1 22 p pD  and |FixC(f2,0)|. It shows that the 

number of  DFS of 
1 22 p pD   increases as the number of prime numbers increases from one to 

two distinct primes. 

To illustrate this case, we consider the following example. Suppose p1 = 5, p2 = 3 that is 

D2×5×3 = D30. The order of the automorphism group of D30 is given by |Aut(D30)| = 15 × 8 = 

120. Next, we find the subgroups that are fixed by each automorphisms of D30.  

The subgroups of 30D  are given below;                  

 
1

0H e     

 
15

,0 .for 3,5 and 15kkH a k      

 ,
1 1

 for 1,2,3,4,5,6,7,8,9,10,11,12,13,14 and 15k

kH a b k         

 
13 5,  for 1,2,3,4 and 5.k

kH a a b k      
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 3 15 ,  for 1,2 and 3.k

kH a a b k      

 
5

1

1 , .H a b    

The order of the automorphism group of 30D   is given by 30| (  ) | 15 8 120.Aut D      Next 

we find the subgroups that are fixed by each automorphisms of 30D . 

Table 2: Subgroups fixed by 30( )Aut D
 

    ,( )Fix f    

1 0 {All  lattice subgroups of D
30

}
 

1 1,2,4,7,8,  

1,13,14 

1 3 5 15 15

0 0 0 0 1{ , , , , }H H H H H  

1 3,6,12 1 3 5 15 15 5 5 5

0 0 0 0 1 1 2 3{ , , , , , , , }H H H H H H H H  

1 5,10 1 3 5 15 15 3 3 3 3 3

0 0 0 0 1 1 2 3 4 5{ , , , , , , , , , }H H H H H H H H H H  

2,8,14 0 1 3 5 15 15 1 3 5

0 0 0 0 1 1 1 1{ , , , , , , , }H H H H H H H H  

2,8,14 1,7,13 1 3 5 15 15 1 3 5

0 0 0 0 1 15 5 3{ , , , , , , , }H H H H H H H H  

2,8,14 2,14,11 1 3 5 15 15 1 3 5

0 0 0 0 1 14 4 2{ , , , , , , , }H H H H H H H H  

2,8,14 3,6,9 1 3 5 15 15 1 3 5

0 0 0 0 1 13 3 1{ , , , , , , , }H H H H H H H H  

2,8,14 4,13,7 1 3 5 15 15 1 3 5

0 0 0 0 1 12 2 3{ , , , , , , , }H H H H H H H H  

2,8,14 5 1 3 5 15 15 1 3 5

0 0 0 0 1 11 1 2{ , , , , , , , }H H H H H H H H  

2,8,14 6,12,3 1 3 5 15 15 1 3 5

0 0 0 0 1 10 5 1{ , , , , , , , }H H H H H H H H  

2,8,14 7,4,1 1 3 5 15 15 1 3 5

0 0 0 0 1 9 4 3{ , , , , , , , }H H H H H H H H  

2,8,14 8,11,14 1 3 5 15 15 1 3 5

0 0 0 0 1 8 3 2{ , , , , , , , }H H H H H H H H  

2,8,14 9,3,12 1 3 5 15 15 1 3 5

0 0 0 0 1 7 2 1{ , , , , , , , }H H H H H H H H  

2,8,14 10 1 3 5 15 15 1 3 5

0 0 0 0 1 6 1 3{ , , , , , , , }H H H H H H H H  

2,8,14 11,2,8, 1 3 5 15 15 1 3 5

0 0 0 0 1 5 5 2{ , , , , , , , }H H H H H H H H  

2,8,14 12,9,6 1 3 5 15 15 1 3 5

0 0 0 0 1 4 4 1{ , , , , , , , }H H H H H H H H  

2,8,14 13,1,5 1 3 5 15 15 1 3 5

0 0 0 0 1 3 3 3{ , , , , , , , }H H H H H H H H
 

2,8,14 14,8,2 1 3 5 15 15 1 3 5

0 0 0 0 1 2 2 2{ , , , , , , , }H H H H H H H H
 

4,7,13 0,0,0 1 3 5 15 15 1 1 1 3 5 5 5

0 0 0 0 1 1 6 11 1 1 2 3{ , , , , , , , , , , , }H H H H H H H H H H H H  

4,7,13 3,6,12 1 3 5 15 15 1 1 1 3 5 5 5

0 0 0 0 1 5 10 15 5 1 2 3{ , , , , , , , , , , , }H H H H H H H H H H H H  

4,7,13 6,12,9 1 3 5 15 15 1 1 1 3 5 5 5

0 0 0 0 1 4 9 14 4 1 2 3{ , , , , , , , , , , , }H H H H H H H H H H H H  

4,7,13 3,6,12 1 3 5 15 15 1 3 5

0 0 0 0 1 7 2 1{ , , , , , , , }H H H H H H H H  

4,7,13 6,12,9 1 3 5 15 15 1 3 5

0 0 0 0 1 6 1 3{ , , , , , , , }H H H H H H H H  

Table 2 (Continued) 
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Table 2 (Continued) 

4,7,13 9,3,6 1 3 5 15 15 1 1 1 3 5 5 5

0 0 0 0 1 3 8 13 3 1 2 3{ , , , , , , , , , , , }H H H H H H H H H H H H  

4,7,13 12,9,3 1 3 5 15 15 1 1 1 3 5 5 5

0 0 0 0 1 2 7 12 2 1 2 3{ , , , , , , , , , , , }H H H H H H H H H H H H  

4,4,7,7,13,13 1,11,2,7,4,14 1 3 5 15 15 1 1 1 3

0 0 0 0 1 2 7 12 4{ , , , , , , , , }H H H H H H H H H
 

 

4,4,7,7,13,13 2,7,4,14,8,13 1 3 5 15 15 1 1 1 3

0 0 0 0 1 2 7 12 2{ , , , , , , , , }H H H H H H H H H  

4,4,7,7,13,13 4,14,8,13,1,11 1 3 5 15 15 1 1 1 3

0 0 0 0 1 2 7 12 3{ , , , , , , , , }H H H H H H H H H  

4,4,7,7,13,13 5,10,5,10,5,10 1 3 5 15 15 1 1 1 3

0 0 0 0 1 2 7 12 1{ , , , , , , , , }H H H H H H H H H  

4,4,7,7,13,1 8,13,1,11,2,7 1 3 5 15 15 1 1 1 3

0 0 0 0 1 2 7 12 5{ , , , , , , , , }H H H H H H H H H  

11 0 1 3 5 15 15 1 1 1 1 1

0 0 0 0 1 1 4 7 10 13

3 3 3 3 3 5

1 2 3 4 5 1

{ , , , , , , , , , ,

, , , , , }

H H H H H H H H H H

H H H H H H
 

11 5 1 3 5 15 15 1 1 1 1

0 0 0 0 1 2 5 8 11

1 3 3 3 3 3 5

14 1 2 3 4 5 2

{ , , , , , , , , ,

 , , , , , , }

H H H H H H H H H

H H H H H H H
 

11 10 1 3 5 15 15 1 1 1 1 1

0 0 0 0 1 3 6 9 12 15

3 3 3 3 3 5

1 2 3 4 5 3

{ , , , , , , , , , ,

 , , , , , }

H H H H H H H H H H

H H H H H H
 

11 1,4,7,13 1 3 5 15 15 5

0 0 0 0 1 3{ , , , , , }H H H H H H  

11 2,8,11,14 1 3 5 15 15 5

0 0 0 0 1 2{ , , , , },H H H H H H  

11 3,6,9,12 1 3 5 15 15 5

0 0 0 0 1 1{ , , , , , }H H H H H H
 

 

 
Now, computing from subgroup lattice from Figure 2, we have the following values: 

 

1,0
| ( ) | 134Fix f 

1,1 1,2 1,4 1,7 1,8

1,11 1,13 1,14

| ( ) | | ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | 12

Fix f Fix f Fix f Fix f Fix f

Fix f Fix f Fix f

    

   
 

1,3 1,6 1,9 1,12| ( ) | | ( ) | | ( ) | | ( ) | 24Fix f Fix f Fix f Fix f    

1,5 1,10| ( ) | | ( ) | 32Fix f Fix f    

2,0 2,1 2,2 2,3

2,4 2,5 2,6 2,7

2,8 2,9 2,10 2,11

2,12 2,13 2,14

| ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) |

Fix f Fix f Fix f Fix f

Fix f Fix f Fix f Fix f

Fix f Fix f Fix f Fix f

Fix f Fix f Fix f

    

   

   

  8,0

8,1 8,2 8,3 8,4

8,5 8,6 8,7 8,8

8,9 8,10 8,11 8,12

8,13 8,14

| ( ) |

| ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) |

Fix f

Fix f Fix f Fix f Fix f

Fix f Fix f Fix f Fix f

Fix f Fix f Fix f Fix f

Fix f Fix f

 

   

   

   

 14,0 14,1| ( ) | | ( ) |Fix f Fix f  
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14,2 14,3 14,4 14,5

14,6 14,7 14,8 14,9

14,10 14,11 14,12 14,13

14,14

| ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | 26

Fix f Fix f Fix f Fix f

Fix f Fix f Fix f Fix f

Fix f Fix f Fix f Fix f

Fix f

   

   

  

 

 

4,0 4,3 4,6 4,9 4,12 7,0

7,3 7,6 7,9 7,12 13,0 13,3

13,6 13,9 13,1

| ( ) | | ( ) | | ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | (

Fix f Fix f Fix f Fix f Fix f Fix f

Fix f Fix f Fix f Fix f Fix f Fix f

Fix f Fix f Fix f

     

     

   2 ) | 46

 

11,0 11,5 11,10| ( ) | | ( ) | | ( ) | 66Fix f Fix f Fix f      

4,1 4,2 4,4 4,5 4,7 4,8

4,10 4,11 4,13 4,14 7,1 7,2

7,4 7,5 7,7

| ( ) | | ( ) | | ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) |

Fix f Fix f Fix f Fix f Fix f Fix f

Fix f Fix f Fix f Fix f Fix f Fix f

Fix f Fix f Fix f

      

     

   7,8 7,10 7,11

7,13 7,14 11,1 11,2 11,3 11,4

11,6 11,7 11,8 11,9 11,11

| ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) | | ( ) | |

Fix f Fix f Fix f

Fix f Fix f Fix f Fix f Fix f Fix f

Fix f Fix f Fix f Fix f Fix f Fix

  

     

     11,12

11,13 11,14 13,1 13,2 13,4 13,5

13,7 13,8 13,10 13,11 13,13 13,14

( ) |

| ( ) | | ( ) | | ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) | | ( ) | | ( ) | 16

f

Fix f Fix f Fix f Fix f Fix f Fix f

Fix f Fix f Fix f Fix f Fix f Fix f



     

     

 
 

From the computation above we have that; the number kA   of distinct fuzzy subgroups of 

30D  with respect to    is given by the equality; 

 

2

1
[134 (12 8) (24 4) (32 2) (26 3 15) (46 3 5) (16 3 10)

120

 (66 3) (16 12)]

     26.

A                

   



 

 

Notice that to obtain f2,0 ∈
1 22( )p pAut D , we set  1, 2 2p p   . However, suppose p1 = 2 or p2 = 

2, our result will remain valid since the number of DFS is invariant for any two distinct 

primes.  

Table 3:  The number DFS of D2n for a few number of distinct primes 

Group 

D2n 1 22 p pD  
1 2 32 p p pD  

1 2 3 42 p p p pD

 

1 2 3 4 52 p p p p pD

 

Ak 26 150 1082 9366 

k 2 3 4 5 

         aWhenever k = 3, then Ak = 150, for details, see Olayiwola and Isyaku (2018). Similar procedure also applies for k = 4, 5.  
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These numbers correspond to two times the ordered Bell numbers. The ordered Bell numbers 

are used to represent the distinct rational preferential arrangement available to a person faced 

with k distinguishable decisions allowing indifference, see Gross (1962) and Murali (2006). 

These numbers also form a sequence with ID Number A000670 on Online Encyclopedia of 

Integer Sequence. 

More generally, we conclude that there is bijective correspondence between the number of 

DFS of D2n and chains of subgroups of D2n fixed by the element of automorphism group f2,0. 

Also, the number of DFS of D2n is invariant with respect to the choice distinct primes. 

To establish the recurrence relation for the number of DFS of D2n, we assume an initial 

condition for our recurrence relation. The initial condition specifies the terms before 

recurrence relation takes effect. Set A0 = 1 as initial condition. The case k = 1,2 had earlier 

been computed, while the case k = 3 was computed by Olayiwola and Isyaku (2018), so A1 = 

6, A2 = 26 and A3 = 150. We can write Ak in terms of ordered Bell number, Bk. These Bell 

numbers can be computed in the following manner: 

 
1

0

0

with ( )   1
n

n

n i i

i

B b B




  . 

 

Table 4: The values of Ak is presented in a Pascal like triangle as follows: 

 
2 2 1 

2 3(3) 3 1 

2 13(4) 3(6) 4 1 

2 75(5) 13(10) 3(10) 5 1 

               2    541(6)  75(15)           13(20)                  3(15)                   6     1 

 

 

The first and last entry in each row are fixed, they are 2 and 1 respectively. Entries in brackets 

are consistent with the entries obtained in classical Pascal triangle. Entries multiplying the 

brackets on the second column of each row are obtained by adding only the entries of the 

preceding row without the fixed 2. For example, the first row is A1 and we have 3 = (2 + 1) = 

3. Also, the second row A2, we have 13 = 3(3) + 3 + 1 = 13. We can now compute A1 = 2 × (2 

+ 1) = 6, A2 = 2 × [3(3) + 3 + 1] = 26. The following lemma gives the relationship between Ak 

and Bk. We state without proof as the proof is straightforward. 

 

Lemma 4.3.  The number of distinct fuzzy subgroups of D2n, is given by Ak = 2Bk+1. A0 = 1 and 

k ≥ 1. 

4.3.1 Exponential Generating Function for Ak  

In what follows, we derive the exponential generating function for Ak. 
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Theorem 4.4. The exponential generating function of 12 kkA B   is 

 

 
2

2

2 (2 )
.

(2 )

x x

xk

e e

e
A

 



 

 

Proof: According to Trojovsky (2006), the exponential generating function for Bk is given by  

1
( )

2
E x

B x
e




. If BE(x) is exponential generating function of a sequence Bk, then the 

derivative of BE(x), that is 
'

2
( )

(2 )

x

E x

e
B x

e



 gives the exponential generating function of 

Bk+1 , see Wilf (1994). Let 

 

1

2
0(2 ) !

x
kk

x
k

be
x

e k










, 

 
then 

 

1
02

1(2 ) !

x
kk

x
k

be
b x

e k






 


  

1
02

0

21
 .

(2 ) 2 !

x
kk

x
k

be
b x

e k






 


  

 

But Ak = 2Bk+1, thus 

 

02
1

1
.

(2 ) 2 !

x
kk

x
k

ae
b x

e k





 


  

 

But                                              

 

0

1 0

1 1 1
.

2 ! 2 ! 2

k kk k

k k

a a
x x a

k k

 

 

    

 

Thus,                                 

 

0 02
0

1 1
.

(2 ) 2 ! 2

x
kk

x
k

ae
b x a

e k





  


  

 

Recall that, b0 = 1 = a0, hence 

                                        

  0 02
0

1 1
,

(2 ) 2 ! 2

x
kk

x
k

ae
a x a

e k





  


  
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then we have 

 

2
0

1 1

(2 ) 2 ! 2

x
kk

x
k

ae
x

e k





 


  

and finally,  

 
2

2
0

2 (2 )
.

(2 ) !

x x
kk

x
k

ae e
x

e k





 



  

 

Hence the generating function for Ak is 

 
2 2 3 4

2

2 (2 ) 26 150 1082
( ) 1 6  

(2 ) 2! 3! 4!

x x

E x

e e x x x
A x x

e

 
      


 

 

The k-th term of Ak are the coefficients of 
!

kx

k
in the expansion above. 

5. Conclusion 

For DFS of dihedral group D2n, where n is a product of finite distinct number of prime 

number, we have established the following results: 

 The number of DFS of D2n is invariant with respect to the choice of distinct primes but 

varies with respect to the number of distinct primes. 

 Counting DFS of D2n has been sufficiently reduced to counting the chains of subgroups 

fixed by f2,0. 

 The number of DFS of D2n can be computed from the recurrence relation Ak = 2Bk+1 

with A0 = 1. 

 The generating function for DFS of D2n is given by  

 
2

2

2 (2 )
( ) .

(2 )

x x

E x

e e
A x

e

 



 

 

We hope that this results will serve as a motivation towards establishing some explicit and 

more efficient formulas for counting DFS of other well known finite groups. 
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