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Abstract

In this paper, we consider the asymptotic behavior of solution to
the nonlinear damped wave equation

uy — div(a(t,z)Vu) + b(t, x)uy = —|ufP"'u ¢t €[0,00), z€R"

(0, x) = up(x), u(0,2) = u1 () zeR"

with space-time speed of propagation and damping potential. We o0b-
tained L? decay estimates via the weighted energy method and under
certain suitable assumptions on the functions a(t,z) and b(t,x). The
technique follows that of Lin et al.[8] with modification to the region
of consideration in R™. These decay result extends the results in the
literature.

Subjclass Primary: 35L05, 35L70; Secondary: 37L15
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1. Introduction

In this paper, we are concerned with the asymptotic behavior of solution
to the following nonlinear wave equation

u(0,z) = ug(z), ut(0,2) = ug(x) x e R",

(1.1)

with space-time dependent coefficients of the form

{ U — div(a(t,m)Vu) +b(t, v ur = —|uPu, te[0,00), ze€R"

(1.2) b(t,x) = bo(1+ |z[>) = (1 +1)77

and

pr(1+|e?)2 (142)7[¢]? < alt, 2)6-€ < po(L+]2?)3 (1+1)7[€2, € € R”
(1.3)
where a(t,z) = n(t)"1p(z) and n(t) = (1 +¢)77. In addition, by > 0,
po>0,a+0€0,2) and S+ € [0,1), where u = u(t, z). More precisely,
a+pB+0d6+~v €[0,1). Equations of the form (1.1) arise in the study of
nonlinear wave equations describing the motion of body traveling in an
in-homogeneous medium. They appear in various aspects of Mathematical
Physics, Geophysics and Ocean acoustics.

In the case of scalar coefficients and bounded smooth domains €2, there
is an extensive literature on energy dacay results. For the semi-linear wave
equation

(1.4) uy — Au +up = [uf?,

Todorova and Yordanov [18] showed that C,, = 1+ 2 is the critical
exponent (Fujita exponent) for p < oo (n < 3) and p <1+ 2(n > 3).

Nishihara in his paper [11] showed that the decay rate of solution to
the damped linear wave equation follows that of self similar solution of
its corresponding heat equation for n = 3 and showed this by obtaining
LP — L1 estimates on their difference. For similar results on 1-dimension
and 2-dimensions, see Marcati and Nishihara [9] and Hosono and Ogawa [5]
respectively, and in any dimension, see Narazaki [10]. Hence, it is expected
that the behavior of the solution to equation (1.4) is similar to that of the
corresponding heat equation

(1.5) up — Au = |ul?,
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whose similarity solution wu,(¢,z) has the form = (:Ut*%) with
a = lim; o |x|%f(a:) > 0 provided that p < 1+ %
In the case of time dependent potential type of damping, with equations
of the form
(1.6) uy — Au 4+ b(t)uy + |ulPlu =0,

there are also several results on the decay rate of the solution. Nishihara
and Zhai [13], used a weighted energy method similar to those in [18] and
obtained decay estimates of the form

[Jull2 < Ct_(‘l(pn—l))(l-&-ﬁ)

1.
o | < Ct” T D)D)

3

under the assumption that b(t) =~ (1 4 ¢)~?. For Cauchy problem of the
form
(1.8) ug — a®(t) Au + b(t)us + colulP " u = 0,

it is well known that the interplay between the coefficient a?(t) and the term
b(t)uy induces different effect on the asymptotic behavior of the energy E(t)
given by

1 a’(t) 1
(19) B(®) = 3wl + S Tulf+ —ulf,

For more details see [2, 3, 4, 20] and the references therein. In [1] Bui
considered the asymptotic behavior of the nonlinear problem (1.8) with
a(t) = (1+)" and b(t) = p(1+£)(1+t)~1, £> 0, cg = 0 and obtained the
following estimate

Jue(t,), (L4 Ve, gz < (16 FEDmS0 =370 (g | g+ sl 2)
(1.10)
with p* = 2(1 — p— HLI).

In the case of damped wave equation with space dependent potential
type of damping;

(1.11) ugg — A+ b(x)ug + [ufPlu =0,

where b1 (1 + |z])™* < b(x) < ba(1 + |z|)™ and by, by > 0, Todorova and
Yordanov [19] investigated the decay rate of the energy when 0 < a < 1.
They obtained several decay rate types for solutions of (1.11) depending on
p and «. These decay rates take the form
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=1 __p+1
(112)  (fluella + [Vulla, l[ullpsr) = O(¢771 7,770 +)
if1<p<1+% and

_ ay_ 1 , _n _ ay_ptl n
(”ut||2+||vu”27Hqu-‘rl) :O(t 2T tapm 0 ¢ (1+2)2(Pp71)+4+5>

(1.13)

if 1+ ffo‘a <p<1l+ %, for ¢ > 1, where § is a constant.
Nishihara[12] also considered the asymptotic behavior of solution to the
semi-linear wave equation (1.11) with b(z) satisfying

(1.14) bi(1+ [22) 7% < bx) < bo(1 + [af?) "3

and obtained decay rates of the following type

C(1+1t) 2@ if 142 <p< 242
(e, < O +¢) a1 1420 <p< 142
ull, - )||l2 > __2 (1 y_n
O +t) 7 1) "t log(t + 2)]3 ifp =14 20
1 @
C(1+4t) 71 if 1l <p<1+ -2

(1.15)

where a € [0, 1).

Ikehata and Inoue [6] studied nonlinear wave equations with b(x) = bo(1 +
|z|)~! and showed that solutions to (1.11) depend on the coefficient by and
their decay estimate takes the form

(1.16) lull = O™ uel3 + [IVull3 = O )
where
1l<pu+by<14bg if0<byg <1
0<u<l1 if bg > 1.
Moreover, for damped wave equations with space-time dependent po-
tential type of damping

u — Au+b(t, 2)u + |ulP~lu =0, t>0, x € R"

(1.17) w(0,z) = uo(x), u (0, z) = uy(z), zeR",

Lin et al. [8] considered decay rates of solution to (1.17) and showed
using the weighted energy method that the L? norm of the solution decays
as
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C(1+ t)‘(p_il—ﬁﬂlﬂ%) if o)

lu(t.) s <8 O+~ T D og(t 4 2), i E =
B8

C(l + t)_(1+ﬁ)ﬁ+2(12ta) (N_Oé%) if a;p_—&—ll) <n

(1.18)
For nonlinear wave equations with variable coefficients which exhibit a
dissipative term with a space dependent potential

(1.19) uy — V- (b(x)Vu) + V- (b(x)uy)) =0,z € R", ¢t>0

under the assumption that

(1.20)  bo(1+ |z])?[€]* < b(z)€ - € < bi(1+ [2))°I€f?, €€R,

where by > 0, by > 0 and g € [0,2). R. Ikehata et al. [7] obtained long time
asymptotics for solutions to (1.19)-(1.20) as a combination of solutions of
wave and diffusion equations under certain assumptions on b in an exterior
domain, see also [15].

Said-Houari [17] considered a viscoelastic wave equation with space-
time dependent damping potential and an absorbing term

uy — Au+ [§ g(t — s)Au(s)ds + b(t,2)u; + [uPlu =0, t>0, zcR"
u(0,x) = up(x),us(0,2) =ui(xr) x€R"
(1.21)
and by using a weighted energy method, they showed that the L? decay
rates are the same as those in [8].
More recently, Roberts[16] under the assumption that

bo(14]z|)? < b(z) < by(1+]z))® and  ao(l+|z))™ < a(x) < a1 (1+|z])
with

(1.22) a<l, 0<B<2 2a+B<2,

obtained energy decay estimates of solution to the dissipative non-linear
wave equation

ug — div(b(z)Vu) + a(x)u + [uPlu =0, z€R™ t>0

(1.23) w(0,2) = ug(z) € HY(R™), (0, z) = uy(z) € L2(R"),
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using a modification of the weighted multiplier technique introduced by
Todorova and Yordanov(14].

In this paper, by using the weighted L?-energy method similar to that of
[8], we obtain decay estimates of the energy of the solution to (1.1), where
a(t,z) and b(t,z) have the form in (1.2)-(1.3) above. In [8], the space R"
was divided into two zones

Z(t; L,to) := {x € R"|(to + t)*> > L + |z|?}

and Z¢(t; L,tg) = R"\Z(t; L,tg). To obtain boundedness on certain esti-
mates on Z, a further division of Z was required. Here, we split the domain
into two zones

Q(t,L,tg) ={xr € R": (to +t)A > L+ |z|?} and

Qc(t, L, to) = Rn\Q(t, L, to)
which depend on the weighted function for A = % and positive
constants L, tg. With this choice, we overcome the challenge of splitting the
first zone in order to obtain boundedness for every estimate on Q(¢; L, )
in the proof.

2. Preliminaries

In this section, we state some basic assumptions used in this paper. First,
we introduce the following notations. LP(R™), 1 < p < oo, the Lebesgue
space with norm | - ||, and H(R") the Sobolev space defined by

(21)  H)R") :={uc L8 . /R (1+ |2|?)2|Vul2dz < oo}

Lemma 2.1. (Caffarelli-Kohn-Nirenberg)

There exist a constant C' > 0 such that the inequality

(2.2) 2|7l < Cll|2*Vullf 2] u] 7

holds for all uw € C§°(R") if and only if the following relations hold:

1 6—-1 1 7
+%:9(E+T>+(1—9)(]—)+E>

1
2.3 ~
(2.3) .
withp,g>1.7r>0,0<0<1.6—d<1if¢>0andi+5L =142

Remark 1. When ¢ = 6 = ¢ = 0, the Lemma is referred to as the
Gagliardo-Nirenberg inequality.
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We define the weighted function (¢, z) as follows:

2—(a+9)
BN DR
(2.4) P(t,x) =\ (o £ )77
for a small positive constant \ = % and tg > L > 1. Moreover,
we have
(Ltaf2) =5
Pi(t,w) = A+ B +) e
—a—90
L+|z>)" 2 =z
Vita) = A2 (a+0) L2t

L+|xz|2 —a—4 |2
Vo(to)? = N2 — (a+6)2 Sk
and consequently, we have

a(t, )| Vy|?
(_wt(ta gj))

In the sequel, we will denote the function (¢, z) by 1 for simplicity.
To begin, we state the following lemmas which will be needed in the proof
of the main result. First, we define the functions £(¢) and H(t) associated
to problem (1.1) by

1
(2.5) < Sb(t.2).

(26) E(t) == en(t) [ Fluel? + 252 Vul 4 Sy lupt]
and

2 b(t, ), o
(2.7) H(t) = e*n(t) [uu; + =5 ul |

respectively. Then for the function £(¢) in (2.6), we have the following
result.

Lemma 2.2. Let u be a solution of (1.1), then the function E(t) defined
in (2.6), satisfies

LEW) < V- (¥ pla)Vuue) + e2on() [ 252 + ] ur]? + €20 2D fy 2
+€2w77(t) {(P+13(1+t) + %} |U|pJrl + e {p(xg)wt‘] |VU|2~
(2.8)
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Proof.  Multiplying (1.1) by e*u; and using (2.5), we obtain

a(t
e [Blu? + 2 Vul? + hplul]

=V (Palt,2) Vuuy) + e [y — blt, 2)] [ur]? + L2 V2
e 1/)0, L 2 821/)(1 L 2 621/’)
(29 + ¢tt {1/) Va2 — VWM&} _ (tqpt)'vwl g |2 + j£+ibt|u|p+1
< V- (alt, ) Vuug) + €2 [ — 3b(t, @) |Jur[2 + 4D T2
eXa(t,z 2 2e2
+ wt [¢ ]Vu\ unt] + %‘u’p+l’

where we have used

(2.10) e2uy - b(t, z)uy = e2Vb(t, )| ug|*

By employing Schwartz inequality, we observe that

e2wa €T 2
52 [l vl - Vou
621/)(1 €T
(2.11) = <802 [y, 2| Vuf? — 290, V- Vo + [V ]
6 1’bCL x
< 2l [y | Vuf? - 3V 2Juif?]-
Hence, using (2.5) in (2.11) and substituting the resulting estimate in
(2.9), we obtain

< Bl + <2 vu + Sl ]|
(212) < v. (ewa(t,m)Vuut) +e2¥ [wt - b(th)} |ug|? + %MPH
te2¢ [at(;@) + a(t,g)lﬁt] ‘VUP

Sl

and multiplying (2.12) by 7(t), we get

% [621/’77@) [%\ut|2 + ﬁg’—x)\VuP + I%MPH}
< V- (p(@) Vuuy) + e2on() [ 25 + o] + €20 2, 2
+e2¥n(t) {@Tl)iﬁt) + ﬁ_l} Pt 4 e2¢ {0(35_3)%] V.
(2.13)

Now, for the function H(t), we have the following lemma.
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Lemma 2.3. Let u be a solution of (1.1), then the function H(t) defined
in (2.7), satisfies

A(t) < V- (€2 p(z)uVu) + e2n(t)us|2 + 2620 () bruuy — e2on(t)|ulrtt
g2y o) 4 M|

( | o2 m(t)g(t,m)‘u’z + ewnt(t)uut
2.14

Proof.  Multiplying (1.1) by e?¥u and using the estimate (2.5), we get

B ]
= V- (e¥a(t,z)uVu) + €2¢|Ut|z + 22y + 621/}M2’I)|ul2
(2.15) Qtwa(t @) | Vul? — %|VU|2 2 — et
+UE [y + ST gy |2
< V. (Xa(t,z)uVu) +e2¢]ut\2—i—Qewwtuut+€2¢bt(;’”’)w!2
_e2dla2(t,z) IVul? + % [Wtu _ a(z(otsmvﬂvuﬂ — e2¥|u Pt

where we have used

(¢, a)uuy — 4 %ﬁmﬂ — e2yb(t, )|l

(2.16) "
_e2¥ t(2vr) ]uP.

Using Schwartz inequality for the second to the last term on the right
hand side of (2.15), we have the following estimate

Uee) |4y 4 W)V 7]

(2.17) y B .
< 22 (3Pl — G IV ul].

20b(t,2) 2

In a similar way, using (2.5) in (2.17), and substituting the resulting
estimate in (2.15), we get

b(t,x
4 [ew[uut—i—%\upﬂ

(2.18) < V- (e®a(t,2)uVu) + ¥ |us|? + 2e*hruus + eQw—bt(;’m) |u|?
ewi(t,m) Vul? + e2¥ b(t;g)wt a2 — 2]y Pt!
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and multiplying (2.18) by 7(t), we obtain

42V (t) {uu + M) |u| H
< V- (ep(z )uVU) +e20n(t)|url* + 262V n(t)hruny — V() P
2] 7y 2 +ezwn(t)[bt<t 2) b(t,gm]w

—.—621’0%1”71‘) ‘u|2 —+ eant(t)'U/U/t.
(2.19)

3. Main result

In this section, we consider the long time behavior of the solution to (1.1).
The result here is obtained via a weighted energy method and the technique
follows that of Lin et al.[8]. For local existence result, the compactness
condition on the support of the initial data is replaced by the following
condition:

I = 5+ﬂ 2 b 2| ,20(0.2) g

0 : n(0) |tg * |[ur]? + a(0,2)|Vuo[* | + (0, z)|uol? |e x

Q(O;L,to)

+ [ O+ O [ + a(0,0) Tuol?] + (0, uoP|
QC(O;L,to)

e2V02) dy < +o0.

(3.1)
With respect to the size of (1 + |x|?) and (1 4 ¢) and considering the
weighted function ¢, we partition the space R™ into the following zones:
Qt,L,itg) = {z€R": (tc+t)4 > L+ |z[*} and
Qc(t, L, to) = Rn\Q(t, L, to)

which is a modification of the zones as inspired by Lin et. al. [§], where
A= % Since a + f+ d + v € [0,1), it follows that A < 2.
Theorem 3.1. Let u be the 5olut1'on of (1.1) and let a(t,x), b(t, x) satisfy
(1.2) and (1.3) for2 <p+1 < — 2+5 when n > 2. Suppose that (ug,u1) €
H}(R™) N L*(R") and (??) holds. Then there exist a unique solution u
of (1.1) with u € L*°([0,00); Hl(R”)) and u; € L*®([0,00); L?(R™)) which
satisfies the following estimate



On asymptotic behavior of solution to a nonlinear wave equation .1625

_2(4B) | a(1+8+7)
C(1+t) »1 +5 =74 , if a(;Pjrll)) -n
_2048) | a(148+7)
B2ull?, <q C+1)~ 7T TEE log(2+1), iR =n
_2(1+ﬁ)+ 148+ (n_2_a

C(1+t) o1 TGty " m1), if St <.

Remark 2. The existence result can be proved using the same technique
as in [8] where in this case the Caffarelli-Kohn-Nirenberg inequality is used
instead of the Gagliardo-Nirenberg inequality, with the additional consid-
eration of the inequality |z|® < (1 + \x|2)% Hence, we omit the proof here.

Proof. [Proof of Theorem 3.1] We split the proof into three parts, the
first part considers the case x € Q(t, L, tp), the second part covers the case
x € Q°(t, L,tp) and the third part combines the two results . We state the
result in each of the zones in the form of a lemma.

Case 1: (z € Q(t, L,to)). In this region, we define a function Ey(2(t, L, to))
by

(3.3) Ey(Qt, L to)) := (to + )PT 5 E(t) + vH(2)

where v is a small positive constant to be determined later, and the func-
tions Hg(t; Q(t; L, to)), H1(t) and Ha(t) by

BHHE(LQE Lto)) == Jawrt) Ee(Qt, L, to))dx

N—-1

Hy(t) = [27 Ey( Q(t,L,to))' [(to+ ) = L] do

|e|=/(to+1)A—L
xL\J(to+t)A— L

(3.6) Hy(t) := /é)ﬂ(t ™ eV [(to + t)BJr%p(x)Vuut + Vp(:r)uVu} - dS
;Lyto

(3.5)

where 7" is the unit outward normal vector of Q(t; L, ). Then we state
the next lemma.
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Lemma 3.2. Let u be a solution of (1.1) and the functions E(t) and H(t)
be defined as in (2.6) and (2.7) above, then for x € §(t, L, ), the function

Ey(Qt, L, to)) satisfies

4B/ L0)
<V (¥ {(to +1)5+% p(z) Vuug + Vp(m)uVu})

(3-7) _koe2bn(t) [1 +(to + t)“%(—wt)} (!%42 +af(t, z)|Vul? + IUI”+1>

oy + ()| Fn(Eb(t )l — Boen(B)ul?

where kg is a positive constant to be determined later. Furthermore, we

have
4 ((to+ ™ Hp(t; Ot L to))J (to + )™ (Hi(t) + Ha(?))
gty
. CA+t)m , if S >
. <{ Ca+t)™ 7 S log(2 + t), if (g)pjll)) =n
a+8)(p+1) 3 a( +1)
C(L 4+ )™ ot PG (55T, if 42 <,

Proof. Multiplying (2.8) by (to + t)5+%, we obtain

(to + 1) e >}

V- (e*(tg +t)f3+TAp(3:)Vuut) +
G b,z ad ad

(3.9)4- ” th)l—?ai%) _ (t4 )(to +t)5+ 2 + (to +t)ﬂ+ D) wt:| 62¢n(t)|ut|2

L 2(to

(B+22) by B+
_2(t0+t)1*?@+a7) +3(to+1)
B+ 20 el
_(pﬂ)(tﬁ;l_(M%A) + 2 (to + 1)

aA
77t2(t)(t0_|_t)5+ 5 |ut|2

4
dt
<

e’ p()|Vul?

e (t)ulPtt.

Observethatﬁ—i—%§ﬁ+a<1sinceA<2andoz+B+5+'y<l.

Now, multiplying (2.14) by v (where v < by) and adding the resulting

estimate to (3.9), we get
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[(to F P ER) + yH(t)]

Sl

<V (2 [(to + 1) () Vg + VP(:B)WUD

+ =% +v— oy (abod) g, t)'8+%¢t} e2Vn(t) ug|?
(310, g O — 5+ %o+ 077 | )V

+I/|: ott) L 61)¢ }62¢77(t)b(ta$)|u|2

i _(,,H)((f:j;)(;% — v+ 2t + )T | 2on(b)]ul

where we have used Schwartz inequality to obtain the following estimates
for the third and last term on the right hand side of (2.14) respectively:

e1b(t,x)(— a
(3.11) [Pl = 16(2(};5”\1;!2 1+ +Jw\2)2\ut!2
< =ablllin )y 2 B (g 4 1)+
and
(3 12) ’nt( )Utu’ < M’ ‘2 77 (1+t) (1+’$‘ )g‘utyz

< b(tm ne(t ’ ‘2 77t( )( +t)ﬂ+ ’ut‘2
By a suitable choice of v sufficiently small as mentioned earlier, we
can now choose a positive constant kg such that the estimates below are

satisfied

aA v
M_i_y_%lg_ko

oA
2=+
(B+4) (B+%5)—
(313) - (B+QA) — 4 < —ko, ( )1 o) Y < —2ko
2t0 p+1)t
1— bo—3 2
va=t > ko, % > ko, 3 > ko, o = ko, Vo > ko,

this gives the desired estimate (3.7).
We now integrate the estimate (3.7) over Q(t; L, tp) to obtain

(3.14) %HE(t; Ot I to)) — Hi (1) — Ho(t) < —Ha(t: Qt: L 1)),
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where

Hz  (t;Q(t; L, to))

= ko / e*n(t) [(1 + (=) (to + 8P ) ugl 2 + (14 (=) (b0 + 1)7F)
Q(t;L,to)
a(t,r)|Vul?

(=t )bl Dl + (L4 (<)o + 0Pl H 4 1] da

(3.15)
Define the function Hg¢ by

He(t Q6 Lito) = [ o)
(3.16) Q(t;Lyto)
{(to )5 [luf2 + a(t, @) [ Vul? + [ul? 1] + bt :1:)|u|2} 2y,

It can be proved easily that for positive constants ki, ko, the following
inequality is satisfied:
(3.17) kyHe < Hp(t;Q(t; L, to)) < koHe.

Now, multiplying (3.14) by (to + )" for m a constant which will be
determined later, we obtain

& ((to + )" Hp(t; Q4 L, 750))] — (to+ t)m(Hl(t) + H2(75))

(3.18) < (to + £y -z HE(t;Q(t;L,tO))—H3(t§Q(t§Lat0))}

to+t

The term on the right hand side is estimated as

i Hp(t;Q(t; L, to)) — Hs(t; Q(t; L, o))

to+t
< 2 e (4 (t; L, to)) — Ha(t: Q(t; L o))

< / e*Pn(t) #—k@%—) - kzo} [lutIQ + a(t,z)|Vul* + |u|p+1}dl‘
QL to) °

+ / () |[22]b(t, )2 — kolul?+? | d,
Q(t;L,to)

(3.19)
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where we have used v, < 0.
From (3.13), it can be easily seen that we can choose tg large enough, such

that 1—?;Ii2m < %1 Therefore, the first term on the right hand side of

to
(3.19) ylelds

/ 621/}7]@) mﬁ% - k‘():| [|Ut|2 + a(t, $)|VU|2 + |U’p+1:| dx
Q£ L ko) ?
<k ‘/ 2 (1) (g2 + alt, )| Vul? + |ulP+)de < 0.
Q(t;L,to)
(3.20)

To estimate the second term on the right hand of (3.19), we apply
Young’s inequality to obtain

e2wn(t) {g—ﬁ]b(tﬂ?)ﬁ —k0|u|p+1 dx
Q(t;L,to)
/ 1+t)1+ﬁ]b0(1 + |2?) 2 Jul? — kolulP* |da
Lt
g1+52g +1) )
Lt
(+48)(p+1)
( )( t)y [ (1 + [o2) T do
Q(t; L,to)
(1+8)(p+1) 4 —o(ptl)
<Cn(t)(1+t) = Jltott) (1+7~2) 200 i1,
(3.21)
Where C = C(mu b07 kQap) and kp = kp(k(),p). Deﬁne J by

A —o(p+1)
J:=C(1+ t)_g%ngiz—V f(t‘ﬁt)g (1 + 7“2) 2(”51) r =Ly,

Thus, if ((p + )) > n, it follows that

(148) (p1)
(3.22) J<COl+t) T,
if Oé)pjll)) = n, we have
ECET ISV
(3.23) J<C+4) TP T 0g2 4 1)

and if ((p H)) < n, we obtain
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A+8)(p+1) 148+ (n a(P+1))

(3.24) J<CA+t)~ 1 TGt

Combining (3.19) - (3.24), we have

wrHe(t Q I(/ to))() )H3(t;9(t; L, 1))
1+8)(p+1
Cl+1t)" T - if (gﬁll)) >n
3.25 A48 (p+1) 5)( )
(3.25) <q C(1+1t)” B = log(2 + 1), if (;pﬁl)) =n
(148)(p+1) 241 (- 2tD)
C(1+ 1)~ SRS S st <,

(o + 0" Hp( (5 Lito)] = (o + )" (Ha(t) + Ha(t)

(A+8) (p+1

(3.26) CL+4)™ 7 » if ((pH)) >n

’ ( 5)( )
<4 Ca+t)y™ 7™ 14+8)(p 1 log(2 +t), lf% —n
C(1+t)" " 2l | s (n a(pﬂ)), i ozp{p_—&—ll)) <

d

Case 2: For the region Q°(t; L, tg) = {:v|(t0 + )4 <L+ \x|2}, we define
another function Ey(Q°(t, L, o)) by

(3.27) Ey(Q°(t, L to)) := (L + 2|) TP 5)E(t) + vH(2),

where v is a small positive constant to be determined later. In addition,
define

HE(t, Qe (ta L> t[))) 4 fQC(t;L,tO) Ew(Qc(t7 La to))dl’
(3.28)

N-1
Hi0) = 57 Bul 0 Lotol]_ e to 4 9% 2] 7
x4 J(to+t)A—L

(3.29)
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L+|33| ) (B+25) p(x )Vuut+up(:n)uVu]-WdS

8¢ (t;L,to)

(3.30)
where 7 is the unit outward normal vector of 9Q¢(t; L, to)

We can now state the next lemma.

Lemma 3.3. Let u be a solution of (1.1) and the functions E(t) and H(t)
be defined as in (2.6) and (2.7) above, then for x € Q°(t; L, o), the function

Ey(Q°(t, L, to)) satisfies

4By (Q°(t, L to))
<V (L + 12[2) 5B+ () Vg + vp()uVu))

—mé%nﬂLuL+um%m%%@wﬂQwﬁ+auwwm%umwﬂ
+(- w»] n()b(t, ) ul? — ko[l + (L + [x[2)~ K-+

—ko (t0+t
e*'n(t)|ulP*!

(3.31)
where kg is a positive constant to be determined later. Moreover, we have
that

i [(to+ 6" Hi(t: Q06 L o) — (o +1)" (Ha(t) + Ha(t) ) < 0
(3.32)

Multiplying (2.8) by (L + |z|?) 8+%Y) | we obtain

Proof.
d 2)%(6+%%)
CNL A+ |z aPHe(t)
sv<2WL+mmiﬁ#%m>va+f%m (L + |22 5O+ oy 2
(>{ YD) (F |2 >%5+QA)+<L+Iw!> %w] €29 |uy?
L(B+ed)yy Z(B+%4) 2. .
{(L—Hx} 3} (L+|T)1‘f( eyl p(z)Vuu,

1 A
T Y wa aA
%wwﬂﬂﬁ$ﬁqz+ﬁ%@+m>ﬁ+ﬂmw1

(3.33)
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Adding (3.33) to vx (2.19), we obtain

4By (Q°(t, L, o)) 1 i

< V- (e [(L + |:L‘]2)Z(6+a7)p(x)Vuut + Z/p(a:)uVu})

—%(,3_4- adye2¥(L + |x\2)%(6+%)*1x - p(2) Vuug + uemey?
(t) [ — 2L+ |2 7 CHE) + (L + Wﬁ(m%wt} €2V |ug 2

+ {—

T _(ﬁ“’ aA
+1(t) —u—”‘LtJ,Jl%amz + 2 (L + [of2) 5O+
+4

() f”“%] € p(w) [Tuf? + % (L 4 (o) H ) g

%IT

2¢ ’u|p+1

+,,[
(3.34)

For the second term on the right hand of (3.34), by using Schwartz
inequality, we obtain

o +D) e2Vn(t)b(t, x)|ul® + 2ve* n(t)ruwy + ve* ny(t)uuy.

58 +S LA [T p(a) V|
1(graA)_1
< 508+ S (L +[af)x ) Hurl (@) Vul
3.3 3 (3+4N)0(x) S e )
(335) < ALt z(6+1+ch) p(z)|Vul* + N |2)Z[1 =] |
1 (05 )o 24 Z+21) 9
= 2(L+|ml;;1’l(‘3“*(a+m p@IVul+ 2L+ |f2) A 12(ﬁ+”‘{‘>1|ut’

and observe here that %(8+ 1+ (aJr25)A) = 2(ﬁ;il+ﬁ’ﬁ:)+ 9 < 1. Also, by
using the Schwartz inequality, we obtain the following estimates for the
second to the last term and the last term on the right hand side of (3.34)

respectively:

el < GG+ G000+ +lef )% [ug]?
< SR WIbE D)l — S W0+ [a) AT

and

(.37 I(Our] < B w2 4 SR+ (1 + [f)E fuef?

| < M yj2 - (L 4 o) 5O D]

Therefore, substituting the estimates (3.35) - (3.37) in (3.34), we get
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FEu(Q°(t, L, t0)) )
<V (2[(L+ [2f2) 5P+ ( )Vuut—i-up( JuVul)

T (B+e2)—y(1-%) aA

O]+ 2, i &0 2R R Rl
LB+ 1 (g4 aa

I R s +<L+|:c|2>A *2’%]62%<x>|w|2

—y— ol 4 2 5 (6+5Y)
()| —v (p+1)(L+|z[2) T (B+250)] p+1(L+|$|)

iy + S5 e on. o)l

LSS
T

2w|u|p+1

+v
(3.38)

Now, just as in the Case 1, we choose a suitable value for v which is
sufficiently small and a positive constant kg such that the estimates we have
below are satisfied.

1 aA v
Z(ﬁ_"T)_V(l_%) by L (8+24)p0
_bo « _ _v A 2 < _
v oL 21— (B+)] 1 = —ho, ZEE WP CEZIE S o,
1- 2 1
B( (o) > g, 711 = ko, 3 = ko, (1—62b0)>k0, v > 2ko,
21) Z kOa +1 el kOa
(3.39)

which gives the desired estimate. Therefore by integrating the estimate
(3.31) over Q°(t, L, ty), we obtain

(3.40) S Hip(t: (5 L, o)) — H (6) — H3(1) < ~Hy(1:0°(5: L, 1))

where

Hs(t; Q°(¢t; L, to))

o[ nO@ | [1 (<L + o RO
(3.41)  9elisLa)
[luel? + alt, )| Vuul? + [uf*]

(=t + 7 )bt 2)uf? + [1+ (L + [2f) 30O jufp 1 do

Define the function He¢ by
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Hee

= [ {(L a2 %) [0, 2 + a(t,2)|Vul? + 1] + b(t,x)|u|2} 2 dg.
Qc(t;L,to)
(3.42)

It can be proved in a similar way as in Case 1 that for positive constants
1, k5, the following inequality holds.

(3.43) KiHeC < Hp(t; Q0 Ly o)) < kiHeC.

Multiplying (3.40) by (to 4+ t)" for the same constant m as in Case 1,
we have

& |to+ )" He(t:; 5t Lto))] — (to + )™ (Hi (t) + H (1))

(3.44) < (to+1)" t HHE(t Q°(t; L, ty)) — Hs(t; QC(t;L,to))]

The term on the right hand side is estimated as

Tt HE(Z ; Q68 Ly to)) — Ha(t;Q°(¢; L to))
mrg

< T — Hy(t:Q0(5 L to))

k‘* I (B+aA) aA
< [ o[ [ cu(E+ )R]
Qc(t;L7t0)
xn(t )Uut|2 +a(t,z)|Vul|? + |u|p+1]da:
s [ (25 - hov) ot o — bolul s

Qe (t;L,to)

(3.45)

It can be seen from (3.39) that we can suitably choose kg such that

mk3 < Mko(1 + 8 + ). Therefore the first term on the right hand side of
(3.45) yields
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(L 4[af?) 30+

(5+a)
mk3 (L+|z
Gy — RoA(l+ 5+ ’Y)W}
Qe(t;Lyto)
xn(t)|Jue|? + alt, )| Vul? + [uf ! | da

- 20 L)X T
< e |k — koAl + 8 +17)
Qe (t;Lyto)

x(t) [Jue|? + alt, 2)|Vul? + [up*1]dz < 0.
(3.46)

Likewise, for the second term on the right hand side of (3.45), we have

2—(atd)
k3 T
[ ] (75 - rora+ 6+ ) B Yo, 0 — Rolup ] da
Qe (t;L,to)
mk:* A
< / e*n(t) <to+t %l) (t, x)uﬂdeO.
Qe (t;Lyto)
(3.47)

Consequently, we have

(348%  [(to+ &) Hin(t; Q°(t; L, t0)| — (b0 + )™ (H{ () + H3(t)) < 0.
O

Case 3. With tg > L and Hy = Hf, Hy = Hj, then it follows from (3.26)
and (3.48) that

a+8)(p+1)
p—1

% ((to+ 0" [He(t;(t: Lito)) + Hp(t; 2°(t; L, 10)) )
if <
if

m—y— a(p+1)
(3.49) e A CE TSN w +1) B

<< Cca+t)™ log(2 + t), Al —p

iy QEONPED | Lbpn (o) N
CO+)" 7o e ) et <o
Choosing
. —(1+§1(f+1) —1+v+e if —Oéjpjllg) >n
(1+§)_(’f+1) - 21:’(6533:2) (n — —a;pjll)) —1+~y+e€ if —Oépjll) <mn,

(3.50)
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for 0 < e < 1 and integrating (3.49) over [0,t], we obtain

HE(t: Q(t: Lto)) + Hp(t; (55 L t0))]

(1+5)( +1) 1
Ca+ty ot T, if TG > n
(1+B)( +1)
<{ C+t) et T T log(2 4 1), if 22t —
A+8)(p+1) | 148+ a( +1)
C(L4+t)™ " » 1 Trora (=S g Cz;pﬁl)) <n.
(3.51)
In particular, we have
A= / 20b(t, 2)|ul?dz + / 2Vb(t, z)|ul?dz
Q(t;Lyto) e t;:L,to 1
3.52 C(L+8) w1 if ) >
( : ) 7(1+ﬁ)(17+1)+1 . Oé( +1)
Sq Cl+t) ot log(2 + 1), if (pp 7 =n
A+B8)(p+1) | 146+ _o(p+1)
C(l1+t) -1 taGoray (M5 )H, if é)pﬁl)) <n.
Lo gf2) 22CE)
Now, set y = %. Since the following estimate
. . e T
U+ o) F 2 (L4 jof) T = |Gt |7 (g 4y =m0
(3.53)
holds, then for y > 0, we have that
(3.54) ey "6 > O,
Therefore, we obtain
(3.55) A>C(1+t) P Eera () / wlda
RN
which gives the desired estimate. a

Remark 3. The decay result in Theorem 3.1 coincides with that of [8] for
the case 6 =y = 0 and with that of [13] for the case 6 =y =a =0.
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